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Thermal Rossby waves in a rotating annulus. Their stability
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Nonlinear thermal convection in a fast rotating annulus about its axis, with slightly inclined ends, radial
gravity and heating, is studied numerically for a fluid of Prandtl numbers50.7 and different values of the
radius ratio and rotation rate. The properties of the rotating waves that appear after the Hopf bifurcation of the
conductive state are analyzed. Near the critical Rayleigh number, different types of solutions with the same
wave number coexist, and they are classified as a function of their connection with the two types of modes
identified in the linear analysis for this Prandtl number. For different rotation rates, the stability of the primary
solutions as a function of the radius ratio is also studied. The shape of the stability regions and the type of
dominant disturbances that limit these regions are very sensitive to the proximity to the value of the radius ratio
for which the type of dominant mode changes.
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I. INTRODUCTION

The understanding of thermal convection in rotati
spherical Boussinesq fluid shells is the first stage of an
tremely ambitious and nowadays impossible project,
which the dynamics in planetary and stellar atmosphe
including other aspects such as variations of the density
diative transport of the heat, and magnetic-field effects, w
analyzed~see the review@1#!. In regard to that problem, it is
known that the onset of convection is characterized by
presence of different types of modes, depending on the r
tion rate and the Prandtl number of the fluid@2#. The
asymptotic analysis of the nonaxisymmetric problem
high rotation rates@3#, assumes a simple two-dimension
roll-type structure without a significant distortion, known
normal columnar convection@4#. For small Prandtl number
and low rotation rates, the preferred modes, the so-ca
equatorially trapped modes, are fast drifting waves cons
ing of cells attached to the outer boundary at low latitud
They correspond to inertial convection@5,6#. When the rota-
tion increases, there is a transition to another type of conv
tion, the spiralling columnar modes, which span azimutha
various wavelengths from middle latitudes to the equato
region @4#. Transition modes between the equatorial-trapp
modes and the spiralling columns, exhibiting multihum
structure, have been identified recently by Ref.@2# for inter-
mediate values of the rotation rate. Although the onset
convection has been widely studied, this is not the case w
the nonlinear problem of finite amplitude convection. Due
the numerical effort that three-dimensional computations
quire, it has only been partially explored~@4,2,7# among oth-
ers!. For this reason, simplified geometries, providing a d
scription of the dynamics with lesser numerical effort, ha
been adopted in order to mimic some regions of the
spherical shell.

Thus, the problem of thermal convection in rotating c
lindrical annulus has become a prototype for the study of
dynamics in rotating spherical fluid shells as far as the eq
torial region is concerned. For sufficiently high rotatio
rates, the Taylor-Proudman constraint forces the motion
1063-651X/2001/63~5!/056312~14!/$20.00 63 0563
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be two dimensional, independent of the coordinate in
direction of the axis of rotation, and then, the assumption
nearly geostrophic solutions can be made@8#. This system
therefore admits columnar solutions such as those in
spherical shell. Furthermore, if the end boundaries are
parallel, a Rossby wavelike dynamics must be expec
Much work has been carried out on such a system using
approximation of small gap@8–11#. However, with symmet-
ric boundary conditions at the sidewalls, and ends with
curvature, this approximation prevents the appearance o
spiralling columnar modes obtained in spherical shells@5,7#.

In our previous paper@12#, the onset of convection in a
fast rotating annulus with slightly inclined top and botto
lids and radial gravity and heating was studied. In our mod
the curvature of the annulus was retained, and the ra
dependence was analyzed as a function of the gap. Diffe
Prandtl numbers, representative of large, moderate, and
values were considered. For moderate and high Prandtl n
bers, two different families of dominant columnar mod
were found: the modes attached to the inner wall and slan
to the prograde direction, and the almost straight modes w
convection occupying the entire layer. According to Ref.@4#,
we will refer to these modes asspiral columnar modes and
normal columnar modes, respectively. For these Pran
numbers, we showed that the instability is induced by b
thermal and rotation effects, and similar to Ref.@8#, we
called the marginal waves, thermal Rossby modes. For s
Prandtl numbers, we found that, independently of the ro
tion rates analyzed, the dominant modes, which corresp
to the inertial solution of the Poincare´ equation, were ofnor-
mal columnar type. The linear modes for small Prandtl nu
bers thus differed substantially from those obtained
spherical shells

The works of Refs.@6,13# analyzed finite amplitude con
vection in rotating spherical shells in the range of parame
where the linear modes were columnar and for values of
Rayleigh number not very far from the critical value. The
found that no matter what the Prandtl number, the meridio
circulation is very weak. However, for Prandtl numbers
order unity or less, the differential rotation dominates t
©2001 The American Physical Society12-1
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drifting spiralling convection and was nearly independent
the coordinate in the direction of the axis of rotatio
whereas for large Prandtl numbers, the flow is dominated
the normal columnar convection with a weak differential r
tation strongly dependent on this coordinate, and origina
by a thermal wind mechanism@14#. Thus, from these results
and those in Ref.@12#, it follows that preference should b
given to the annular system for modeling the dynamics i
spherical shell of fluids with Prandtl numbers of order uni

In this paper, which is a logical continuation of Ref.@12#,
we consider the same annular configuration, and we are
terested in the nonlinear properties of the convection, wh
will appear in the form of rotating waves after the Ho
bifurcation of the conductive state. All the results are
Prandtl number 0.7. For this value of the Prandtl number,
obtained that small values of the Coriolis parameter and h
values of the radius ratio favor thenormal columnar modes,
whereas thespiral modestend to be dominant for high val
ues of the Coriolis parameter and smaller values of the ra
ratio. Rotating waves resulting from or related to these t
types of modes will be analyzed. The two dimensions
these solutions and their simple temporal dependence al
an analysis of their stability, which has also been carried

The remainder of the paper is organized as follows. T
basic model equations and the numerical techniques use
calculate the rotating waves, and to analyze their stability
summarized in Sec. II. Section III is divided into two par
In the first part we focus our attention mainly on two cas
representative of the nonlinear solutions that result from b
the normal and thespiral modes, and we describe the no
linear properties of these waves. In the second part we
with the stability of the primary solutions. The paper co
cludes with a discussion in Sec. IV.

II. BASIC EQUATIONS AND NUMERICAL METHOD

We consider a fluid contained in a cylindrical annulus
height L(r ) decreasing outwards, rotating about its axis
symmetry with a fast rotation rateV, and the tangent of the
angle of inclinationw of the lids with respect to the horizon
tal, g, being very small (g!1). The mean height of the
annulus will be denoted byL0. The gap of the annulus i
D5r o2r i , wherer o and r i are the outer and inner radiu
respectively. The temperaturesTo andTi (Ti.To) are kept
constant on the outer and inner sidewalls, and the lids
considered thermally insulating. Our model assumes a c
stant effective radial gravity inwardsge , obtained from the
average of the radial gravity and centrifugal force. The
locity field satisfies nonslip boundary conditions at the si
walls, and has a vanishing normal component at the lids.
is discussed in detail in Ref.@3#, boundary conditions on the
tangential components are irrelevant as long ass sinw
@E1/4 holds, whereE is the Ekman number ands is the
Prandtl number defined below.

Sinceg!1, the system admits a basic conductive stat

Tc~r !5Ti1DT
ln r /r i

ln h
, uc50, ~2.1!
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in the rotating frame of reference of the cylinder, withDT
5Ti2To and h5r i /r o . The dimensionless Navier-Stoke
equations in the Boussinesq approximation, written in
rotating frame of reference, and the heat equation, are g
by Eqs. ~2.4! of Ref. @12#. The gap width of the layerD,
D2/k, and DT were used as scales for length, time, a
temperature, respectively, wherek denotes the thermal dif
fusivity.

If we requireg!1 and high rotation rates, previous th
oretical and numerical results@8,15,16# justify the assump-
tion of nearly geostrophic solutions. Then, we have assum
the following decomposition

u5 f ~r ,t !êu1“3@c~r ,u,t !êz#1ũ~r ,u,z,t !, ~2.2a!

T5Tc~r !1Q~r ,u,t !1Q̃~r ,u,z,t !, ~2.2b!

where the azimuthal average ofc is null, and
ũ(r ,u,z,t),Q̃(r ,u,z,t) are orderg. So, at leading order ing,
the azimuthal average ofuu is f (r ,t). Equations forf , c,
and Q are obtained from the azimuthal average of theu
component of Navier-Stokes equations, thez component of
the vorticity equation, and the heat equation, where we
glect terms of the orderg everywhere except in the Corioli
term. Following Ref.@8#, if we average these equations ov
thez interval and take into account the boundary conditio
the equations are written

S 1

s
] t2¹2

2 D f 5
1

s
PuF¹h

2c•
1

r
]ucG , ~2.3a!

S 1

s
] t2¹h

2D¹h
2c5

Ra

r
]uQ1t

1

r
]uc

1
1

sr
@¹2

2 f ]uc2 f ]u¹h
2c#

1
1

sr
@]u¹h

2c] rc2] r¹h
2c]uc#,

~2.3b!

] tQ5¹h
2Q2

1

r 2ln h
]uc2 f S 1

r
]uQ D

1
1

r
@]uQ] rc2] rQ]uc#, ~2.3c!

where ¹h
2 denotes the horizontal Laplacian operator¹h

2

[(1/r )] r(r ] r)1(1/r 2)]uu
2 , ¹2

2 [(1/r )] r(r ] r)2(1/r 2), and
Pu is the projection operator that extracts the zero azimu
mode~see Ref.@12# for details!. The dimensionless param
eters in the above equations are the Rayleigh number Ra
Prandtl numbers, and the Coriolis parametert, defined as

Ra[
aDTgeD

3

kn
, s[

n

k
, t[

4gVD3

nL0
,
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wherea is the coefficient of thermal expansion andn is the
kinematic viscosity. Similar equations, without the Corio
term, were used in Ref.@17# to study the nonlinear dynamic
of the Taylor columns.

The geometry of the domain implies thatc and Q are
periodic in u, and due to the decompositions~2.2a! and
~2.2b!, as was detailed in Ref.@12#, the boundary conditions
on r i and r o are written

f 5Q5c5] rc50. ~2.3d!

Equations ~2.3a!, ~2.3b!, and ~2.3c! together with the
boundary conditions, possessSO~2! symmetry, i.e., they are
invariant under rotations

Ru0
:~r ,u!→~r ,u1u0!, ~ f ,c,Q!→~ f ,c,Q!.

Other authors have analyzed the same problem, but u
the small gap approximation@10#. In the limit of the small
gap width, a plane layer approximation can be used. If
denote byy and x the azimuthal and radial coordinates, r
spectively, defined relative to the midplane, the resulting s
tem will have the translation symmetry in they directionTl
and an additional symmetry not possessed by equat
~2.3a!, ~2.3b!, ~2.3c!, and~2.3d!. They are invariant under th
reflection

k:~x,y!→~2x,y!, ~ f ,c,Q!→~ f ,2c,2Q!.

As a consequence of this reflection symmetry, the symm
group of the problem in the small-gap approximation is
group G5SO(2)3Z2. In this problem, when perturbation
of wave numbera are considered, the Hopf bifurcation o
the conductive state leads to primary solutions, which
rotating waves of wavelengtha52p/a. For the values of
the Coriolis parametert considered in this paper, and for th
critical value ofa5ac , these periodic solutions possess
symmetry that is an element (k,t0)PG3S1, such that the
spatial action ofk is exactly compensated by a phase sh
t05T /2, whereT is the period of the solutions. So, the r
tating waves are invariant under theshift-reflectoperation
Ta/2k. These solutions have been calledsymmetric thermal
Rossby wavesin the works of Busse and collaborato
~ @9,10# among others!.

Notice that, if instead of Eq.~2.2a!, the decomposition of
the velocity fieldu5“3@x(r ,u,t)êz#1ũ(r ,u,z,t) is used, it
is necessary to introduce an additional boundary condi
that ensures the periodicity of the pressure gradient in
azimuthal direction~see Ref.@18# for a general discussion!.
The correct boundary conditions for the small-gap appro
mation of the problem with rigid sidewalls are given in Re
@19#. Another recognized problem in which a similar boun
ary condition is needed is the two-dimensional Poiseu
problem with constant average pressure gradient param
zation, when a stream function formulation is used. The
ditional boundary condition for this case is discussed in R
@20# and @21#.

As a measure of the heat transport by convection, we
use the Nusselt number Nu evaluated at the outer cylindr
surface, which has the following expression
05631
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12h
ln h ] r^Q& r o

,

where the symbol̂ & r o
denotes the average over the ou

surface. To characterize the contribution of the mean zo
flow f over the velocity field, we will introduce the ratior f of
the kinetic energyEf associated tof, to the total kinetic en-
ergy Et ,

r f5
^Ef&

^Et&
,

where the symbol̂ & now represents the average over t
annulus fluid shell.

It is known that the primary convective solutions have t
form of rotating waves in the rotating frame of reference
the cylinder. To obtain a solution of this type, we have e
pandedf , c, andQ in terms of complete systems of func
tions,

f ~r ,t !5(
j 52

J

aj pj~x!, ~2.4a!

c~r ,u,t !5 (
n51

N

(
j 54

J

bn, jexp@ inM ~u2vt !#hj~x!1c.c.,

~2.4b!

Q~r ,u,t !5 (
n50

N

(
j 52

J

cn, jexp@ inM ~u2vt !#pj~x!1c.c.,

~2.4c!

where x is related to the radial coordinater as x52r 2(1
1h)/(12h), M is the wave number,v is the drift rate of
the wave, prograde ifv.0 and retrograde ifv,0, and
aj , bn, j , andcn, j are time independent coefficients, the la
ter two being complex. The functionshj (x) andpj (x), speci-
fied in Ref.@12#, are linear combinations of the Tchebysh
polynomials satisfying the radial boundary conditions.

Letting ũ5u2vt, we obtain from Eqs.~2.3a!, ~2.3b!, and
~2.3c! a set of steady equations, which have been sol
numerically using a spectral Galerkin-Fourier technique inũ
and a collocation method inx. Because of the rotation invari
ance, we have fixed the phase of the solution by prescrib
a relation between some coefficients and using the co
sponding equation to determinev. For particular values of
the Prandtl numbers, the Coriolis parametert, and radius
ratio h, a continuation procedure has been used for the lo
tion of the equilibria solutions to study their dependence w
respect to the Rayleigh number. The curves of solutions h
been obtained using a predictor-corrector continuation a
rithm ~see Ref.@22# for details!.

Similar to Ref. @21#, the stability of a rotating wave o
wave numberM has been analyzed by superposing onto
infinitesimal perturbations of the form
2-3
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cm* ~r ,ũ,t !5 (
n52N

N

(
j 54

J

bn, j* exp@ i ~n1dm!M ũ #hj~x!elmt,

~2.5a!

Qm* ~r ,ũ,t !5 (
n52N

N

(
j 52

J

cn, j* exp@ i ~n1dm!M ũ #pj~x!elmt,

~2.5b!

wheredm5m/M (m is an integer that varies between 0 a
M21), and solving the corresponding eigenvalue probl
for every value ofm. If m50, it is necessary to eliminat
from the expansion of the perturbationc0* the term corre-
sponding to the indexn50, and to add

f * ~r ,t !5(
j 52

J

aj* pj~x!el0t. ~2.5c!

If for some value ofm, the real part oflm is positive, the
M-periodic drifting wave is unstable, otherwise it is stab
When somelm crosses the imaginary axis, a bifurcation o
curs.

The casem50 corresponds to perturbations with th
same wave number as the basic flow, and we will refer
them as superharmonic perturbations. In this case, we alw
obtain a zero eigenvalue corresponding to the trivial pha
shift solution; an additional zero eigenvalue indicates
saddle-node bifurcation.

For the casemÞ0, since the linear operator describing t
stability problem is real, the eigenfunctions for the proble
with dM2m can be obtained by conjugating those withdm ;
moreoverlM2m is the complex conjugate oflm . Then, to
analyze the stability properties and bifurcations of t
steadily drifting waves, it suffices to consider perturbatio
with mP@1,M /2# if M is even, and withmP@1,(M21)/2# if
it is odd. We will refer to these types of perturbations
subharmonic perturbations. Notice that if aM-periodic drift-
ing solution with drift ratev suffers a bifurcation of this type
@R(lm)50#, additional wave numberskn5nM1m andkn8
5(n11)M2m are excited at linear order in the bifurcate
solution, the corresponding frequencies beingvn5knv
2I(lm) and vn85kn8v1I(lm). Then, in a bifurcation of
this type, the basic wave periodicity 2p/M is broken and a
new solution with a larger period emerges. At large amp
tude, the basic wave number of the bifurcated solution is
greatest common divisor ofm andM.

In the range of parameters studied, and for the Pra
number considereds50.7, a resolution ofN58 andJ524
suffices to give more than three significant figures in
values of the Nusselt number, and in the drift rate of
rotating waves. The same resolution gives more than
significant figures for the value of the Rayleigh number, a
more than four for theI(lm) at the points where a bifurca
tion occurs.

III. RESULTS

In this section, we present the results, for values of
Rayleigh number near the onset of convection, correspo
05631
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ing to the analysis of the nonlinear dynamics associated
the two types of modes,normal andspiral, identified in the
linear stability analysis of the conductive state@12# for a
fluid of Prandtl numbers50.7. The range of parameters co
sidered is the same as in our previous paper@12#, and covers
values of the Coriolis parameter,t, between 2000 and 11 00
and radius ratiosh.0.1. Our results in the quoted pap
show that for fixed values oft, the spiral modes are pre-
ferred for small radius ratios. However, forh.0.15 and
t.2300, it was found that there always exists a value of
radius ratio,hc , from which the preferred mode isnormal,
according to the results of the problem in the small-gap
proximation. The higher the Coriolis parametert is, the
higher the valuehc is. Thus, in Fig. 1, where we present fo
t58000 the marginal curve of the conductive state as a fu
tion of the radius ratio, the value ofhc is 0.605. To illustrate
the patterns associated to the two families of modes,
streamlines in the rotating frame of reference of the cylin
of two nonlinear solutions, are shown in this figure. The
solutions come from the preferred modes of the linear pr
lem at the radius ratiosh50.35~spiral! andh50.7 ~normal!,
the corresponding wave numbers beingM510 andM537,
respectively. Since the Rayleigh number Ra5100 000 of
these solutions is near the critical value at everyh, these
streamlines resemble those of the linear modes. All
streamlines plotted in the figures of this paper correspon
the contour plots of

c8~r ,ũ !5c~r ,ũ !2E
r i

r

f ~r ! dr; ~3.1!

FIG. 1. Critical Rayleigh number as a function of the radi
ratio for t58000 ands50.7. Solid circles denote the values of th
Rayleigh number for which the solution that bifurcates from t
marginal curve destabilizes. The numbers near these circles ind
the value ofdm responsible for the instability. The streamlines
the rotating frame of reference of the cylinder of two nonline
solutions at Ra5100 000 are also included. These solutions co
from the dominant modesM510 ~spiral! for h50.35 andM537
~normal! for h50.7.
2-4
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so, c8 is zero at the inner surface. Solid lines will deno
positive values and dashed lines negative ones. In Fig. 1
points where the solution that bifurcates from the conduc
state at the critical Rayleigh number loses stability are r
resented by solid circles. The corresponding values of
parameterdm responsible for every bifurcation are also ind
cated.

As expected, forh→1 and for a fixed value oft, we
found that the critical Rayleigh number of thenormal con-
vection Rac

(n) tends to the critical Rayleigh number for th
small-gap approximation Rac

(sg1) . In addition, the critical
wave numberMc

(n) and the corresponding drift rate forh'1

can be estimated byMc
(n)'ac

(sg1)r̄ andvc
(n)'cc

(sg1)/ r̄ , where
ac

(sg1) andcc
(sg1) are the critical wave number and the corr

sponding drift rate for the small-gap approximation, a
wherer̄ 5(11h)/2(12h) is the mean radius of the annula
shell.

If for h→1 and for a fixed value oft, the dominant modes
among thespiral ones are obtained, we observe that the cr
cal Rayleigh number Rac

(s) of this type of modes tends to th
critical Rayleigh number Rac

(sg2) of thek invariant modes of
the problem in the small-gap approximation. Since the
tentialc and the temperature fieldQ of these modes are zer
at the midplane, they will be referred to as thesecond radial
harmonics. The wave number and drift rate of thespiral

modes forh'1 can now be estimated byMc
(s)'ac

(sg2)r̄ , and

vc
(s)'cc

(sg2)/ r̄ , whereac
(sg2) andcc

(sg2) are the critical wave
number and the corresponding critical drift rate of thesecond
radial harmonic. Provided that the values ofac

(sg1) and
ac

(sg2) are different, the wave numberM of the dominant
normalmode, and of the dominantspiral mode for the same
value ofh, are different. Whenh decreases, the critical Ray
leigh number for thespiral modes decreases and the critic
Rayleigh number for thenormal modes increases, and for
value hc , the spiral modes become the dominant mode
Since usuallyac

(sg2),ac
(sg1) , this could explain the forward

jump observed between the wave number of the domin
spiral mode and that of the dominantnormal mode athc
~from M521 to M527 in the caset58000, see Fig. 1!.
A similar tendency was obtained in the small-gap appro
mation with conical end surfaces@8#. In this paper and sub
sequent papers, the tangent of the angle of inclination
the lids was expressed byg5g0@11e f (x)#, whereg0!1.
Despite the different boundary conditions, notice also
resemblance between our solutions depicted in Fig. 1
solutions of that paper fore51 and f (x)5x ~Fig. 6 of
Ref. @8#!.

A. Uniform rotating waves

The bifurcation of the conductive state, when perturb
tions of wave numberM are considered, is a Hopf bifurca
tion in a system with symmetrySO~2!. Then according to
Ref. @23#, there is a unique branch of periodic solutions co
sisting of rotating waves withZM spatial symmetry, which
bifurcate from this state. Solutions belonging to this bran
~primary solutions! or to other branches related in some w
to them, are analyzed in this section. These solutions wil
05631
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connected mainly with those obtained in the small-gap
proximation of the problem withe50 ~without curvature!,
analyzing the effect of breaking the midplane symmetry. F
this reason, it is necessary to calculate solutions of this pr
lem, and this has been done using the same numerical t
niques as described in the previous section. The corresp
ing equations can be found in the numerous works of F.
Busse and collaborators, and are not reproduced here.

In Figs. 2~a!, 2~b!, and 2~c! we display with solid lines,
the Nusselt number Nu21, the drifting ratev, and the ratio
of energiesr f , of solutions corresponding to rotating wave
of M517 for h50.6 andt52800. The solution that corre
sponds to the branch bifurcating from the conductive stat
Rac525 439, comes from the dominant mode of the line
problem at these values ofh andt. This mode is ofnormal
type. In order to make clear the above quoted connection
these solutions with those of the small-gap approximati
we have also displayed in Fig. 2~a!, with dashed and dotted
lines, the Nusselt number of these latter solutions for
same value oft and wave numberac

(sg1)58.68 correspond-
ing to the critical value for thist; the critical Rayleigh num-
ber is Rac

(sg1)524 624. Dashed lines represent thesymmetric
thermal Rossby waves, which present a symmetric mean flo
profile as a consequence of beingTa/2k invariant (a
52p/a). The dotted line branch represents solutions t
are no longerTa/2k invariant. This branch appears in a se
ondary bifurcation of the branch of solutions that bifurca
from the conductive state; a pitchfork that breaks theTa/2k
symmetry of the primary solutions and gives rise to the
calledmean flowsolutions in Refs.@9,10#. When the curva-
ture of the annulus is considered, the symmetryk of the
system is broken, and the bifurcation can be seen as
imperfect bifurcation observed in Fig. 2~a!, with the corre-
sponding splitting of the dotted line branch in branches 1 a
2. This feature was anticipated in Ref.@10#, although in that
work, by also considering a small-gap approximation,
symmetryk was broken including the effect of conical end
The disconnected curve of the solutions of the problem in
small-gap approximation~againTa/2k invariant solutions! is
one of the curves of the imperfect bifurcation that com
from a pitchfork bifurcation in thet50 problem~equivalent
to Rayleigh-Be´nard!. This is the steady bifurcation of a ro
state that, breaking the reflection symmetryR ~absent in the
tÞ0 case!

R: ~x,y!→~x,2y!, ~ f ,c,Q!→~2 f ,2c,Q!,

maintains the shift-reflect symmetry. This bifurcation pr
duces states that drift either in one direction or the other w
the same drift rate@24,25#, and related between one to th
other by the reflectionR, for suitable chosen origins iny. The
drift speed, which vanishes at the bifurcation point, increa
away from it as the square root of the distance from
bifurcation point. When the Coriolis term is included, th
symmetry R is broken and an imperfect bifurcation
formed.

With respect to the stability of theh50.6 branches, the
branch labeled 1 is stable from the bifurcation of the cond
tive state to Ra532 540; the branch labeled 2 is stable fro
2-5
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the saddle point at Ra532 532 to Ra533 785. Two different
stable solutions with the same wave number then coexis
a small range of values of the Rayleigh number. In b
cases the bifurcation is superharmonic (d50). The rest of
the branches are unstable. Figure 2~b! shows how the drift of

FIG. 2. ~a! Nusselt number Nu21, ~b! drift ratev, and~c! ratio
of energy associated to the mean flowr f , versus the Rayleigh num
ber Ra of uniform drifting waves. Solid lines correspond to so
tions of wave numberM517 at a radius ratioh50.6. In ~a! dashed
lines ~shift-reflect invariant solutions! and the dotted line corre
spond to solutions for the problem in the small-gap approxima
(ac

sg58.68). In both cases, the solutions that bifurcate from
conductive state come from the the dominant modes of the lin
stability analysis of this state;t52800 ands50.7.
05631
or
h

the solutions corresponding to branches labeled 1, 2, an
tends to decrease when the Rayleigh number increases,
an opposite tendency for the solutions in branches 4 an
This figure also shows that for the highest values of the R
leigh number considered, the solutions in branches 1 an
drift in the retrograde direction. In Fig. 2~c! we can appreci-
ate the small contribution of the zonal flow to the tot
stream field for solutions in branch 5, and how for the so
tions in the rest of the branches this contribution is ab
50% for sufficiently high Rayleigh numbers in the range co
sidered. Since the kinetic energy of the fluctuating com
nent of motion^Ek8& exhibits a similar behavior to the Nus
selt number when the Rayleigh number varies~although the
rate of change is different depending on the type of so
tions!, the decrease in the Nusselt number for branch 3
accompanied by a notable increase of the value ofr f @see
Figs. 2~a! and 2~c!#. The effect is similar, although not s
sharp, when the Nusselt number remains practically cons
as occurs in branches 1, 2, and 4.

In Figs. 3~a! and 3~b!, we show at a fixed instant th
streamlines and the contour plots of the temperature fieldQ
in the rotating frame of reference of the cylinder, correspo
ing to different solutions at Ra560 000. Starting from the top
in a counterclockwise direction, they belong to the branc
labeled 1, 2, 3, 4, and 5 in Fig. 2. To plot this figure, we ha
maintained the number of different contour levels. Therefo
the interval between contour levels for the different solutio
is not the same. Solutions corresponding to branches 1 a
are those coming from the splitting of the mean flow so
tions, and as discussed in Ref.@9#, they are characterized b
a small Nusselt number due to the shift of the convect
eddies. For the solutions in branch 1, however, this shif
towards the outer surface of the shell and the velocity field
cyclonic relative to the rotating system. For the solutions
branch 2, the shift is towards the inner surface and the
locity field is anticyclonic. Figure 3~c! shows the correspond
ing cyclonic and anticyclonic shear for the solutions
branches 1 and 2, respectively. The solutions in branche
and 4 present a strong zonal flow in the middle of the sh
retrograde for solutions in branch 3 and prograde for so
tions in branch 4. The convection eddies are shifted to
inner and outer parts of the shell, anticyclonic~cyclonic! in
the inner part and cyclonic~anticyclonic! in the outer part for
the solutions in branch 3~4!. The solutions in branch 5 look
like rotating Taylor columns with a small zonal flow, pro
grade in the middle of the shell. Since convection occup
all the layer, the Nusselt number for this solution is the b
gest one. This last type of solution was also obtained by R
@11#.

In Figs. 4~a!, 4~b!, and 4~c! we represent with solid lines
the Nusselt number Nu21, the drifting ratev, and the ratio
of energiesr f , of uniform rotating waves of wave numbe
M521 for h50.6 andt58000. The primary solution, which
bifurcates at Rac5102 156, comes from the dominant mod
for these values ofh and t. Now it is a spiral mode. For
these values of the parameters, only solutions in branch 1
stable, but within a small region of the Rayleigh numb
values. They lose stability at Ra5105 517 via a subharmoni
instability. At this point, the solutions still maintain the
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spiral character~similar to the solution in Fig. 1! with a
small cyclonic shear. As we will see later, for this val
of the Coriolis parameter, the stability zone of the prima
solutions for aspect ratios near thehc , the crossing of domi-
nant families of modes, is notably reduced. As in the pre
ous case, solutions in branches that do not presen
increase of the Nusselt number when the Rayleigh num
increases, are the ones that show a faster growth rat
the contribution of the kinetic energy of the zonal flo
to the total kinetic energy.

FIG. 3. Temperature fieldQ, at a fixed instant in the rotating
frame of reference of the cylinder, of the solutions correspondin
the branches 1, 2, 3, 4, and 5 in Fig. 2 for Ra560 000.~c! The zonal
mean flow of the same solutions;h50.6, M517, t52800, and
s50.7.
05631
i-
an
er
of

Unlike the previous case, this scenario of branches
the connection between them transforms whenh→1. In the
same figure we have also depicted with dotted-dashed li
branches of solutions of wave numberM532 for h50.7,
where the solution that bifurcates from the conductive st

o
FIG. 4. ~a! Nusselt number Nu21, ~b! drift ratev, and~c! ratio

of energy associated to mean flowr f , versus the Rayleigh numbe
Ra, for uniform drifting waves of wave numberM521 andh50.6
~solid lines! and of M532 andh50.7 ~dotted-dashed lines!. The
solution that bifurcates from the conductive state forh50.6 comes
from the dominant mode~spiral! for these parameters. The solutio
that bifurcates from the conductive state forh50.7 comes from the
dominant mode among thespiral ones for these parameter
t58000 ands50.7.
2-7
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no longer arises from the dominant mode~for these values of
h and t, it is a normal one! but comes from the dominan
mode among thespiral ones. In Figs. 4~a!, 4~b!, and 4~c!, we
can observe how forh50.6 the two disconnected curves a
formed by branches 2-3 and 4-5, whereas forh50.7 they are
formed by their counterparts 3-4 and 2-5. In addition, for t
last value ofh, a new disconnected curve appears in
range of the values of the Rayleigh number considered in
figure, and moves towards higher values of the Rayle
number forh50.6.

Figures 5~a! and 5~b! show in a fixed instant and in th
rotating frame of reference of the cylinder, the streamlin
and the contour plots of the temperature field of the differ
solutions obtained for Rayleigh number Ra5170 000,
h50.6, andt58000. Starting from the top, in a counte
clockwise direction, they correspond to solutions in branc
1, 2, 3, 4, and 5 of Fig. 4. The solution corresponding
branch 1 is characterized by a retrograde mean flow in
inner part, greater than the prograde mean flow in the o
part @see Fig. 5~c!#; the shear is sufficient to shift the spir
structure to the outer part of the shell. The solutions co
sponding to branch 2 exhibit a retrograde mean flow tha
maximum in the middle of the shell, and present anticyclo
convective eddies in the inner part of the shell; the fluid
the outer part of the annulus remains practically stagnan
the rotating frame of reference of the cylinder. Solutions
branch 3 present a retrograde zonal mean flow in the mid
part of the shell, and the convective eddies are shifted to
inner and outer parts of the shell, anticyclonic in the inn
part and cyclonic in the outer part. The spiral effect of so
tions corresponding to branches 4 and 5 is very small. T
present a shear that is not sufficient to destroy the double
columnar structure, and they look like two stacked rotat
normal columns. Notice how the solution corresponding
branch 3 resembles the solution depicted in Fig. 3, wh
belongs to the branch 3 of Fig. 2. In fact fort58000,h50.9,
and M5122, the counterpart branch of branch 3 of Fig
connects with the counterpart of branch 3 of Fig. 4, via
saddle-node bifurcation.

In order to match the branches of solutions obtained
Fig. 4 with those of the small-gap approximation, in Fig. 6~a!
@Figs. 6~b! and 6~c! are enlargements of two zones in Fi
6~a!# we plot with dashed and dotted lines the Nusselt nu
ber Nu21, as a function of the Rayleigh number of the s
lutions corresponding or related to the dominantsecond ra-
dial harmonicof the problem with this approximation. Th
critical a of this harmonic fort58000 isac

(sg2)511.37, and
the critical Rayleigh number is Rac

(sg2)5106 330. Dashed
lines now represent solutions that arek invariant ~also with
midplane symmetric mean flow profile!, and dotted lines rep
resent branches of solutions without any symmetry, exc
those associated to spatial and time periodicity. The dot
line branches, e and d, appear as a consequence of two p
fork bifurcations that break the symmetryk of branches a
and b, respectively. These bifurcations are indicated b
small square in the Figs. 6~a! and 6~b!. The dotted-line curve
formed by branches f–g is a disconnected one~it has been
checked up to values of the Rayleigh number near
5300 000!. These dotted-line branches of solutions sp
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when the symmetryk is broken. The dashed curve a–b
again the disconnected curve of the imperfect bifurcat
that arises from a pitchfork bifurcation in thet50 problem,
when the reflection symmetryR is broken due to the Coriolis
term. This pitchfork is the steady bifurcation of two stack
rolls that breaks the symmetryR but maintains thek sym-
metry. In Figs. 6~a!, 6~b!, and 6~c!, the Nusselt number o
solutions forh50.9 and wave numberM5108 is also plot-
ted ~solid lines!. The solution that bifurcates from the con

FIG. 5. From the top, in a counterclockwise direction,~a!
streamlines,~b! contour plots of the temperature fieldQ, at a fixed
instant in the rotating frame of reference of the cylinder, of so
tions corresponding to the branches 1, 2, 3, 4, and 5 in Fig. 4
Ra5170 000. ~c! The zonal mean flow of the same solution
h50.6, M521, t58000, ands50.7.
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THERMAL ROSSBY WAVES IN A ROTATING . . . PHYSICAL REVIEW E63 056312
FIG. 6. ~a! Nusselt number of uniform rotating waves versus t
Rayleigh number Ra. Solid lines correspond to solutions of w
numberM5108 for a radius ratioh50.9. Dashed lines (k invari-
ant solutions! and dotted lines correspond to solutions for the pro
lem in the small-gap approximation (ac

(sg2)511.37). In both cases
the solutions that bifurcate from the conductive state have the w
numbers that correspond to the preferred modes among thespiral
modes forh50.9 and among thesecond radial harmonicfor the
small-gap approximation.~b! and ~c! are enlargements of som
zones in~a!; t58000 ands50.7.
05631
ductive state is obtained from the dominant mode among
spiral ones. The labels of the branches in these figures
chosen to identify the branches of solutions obtained foh
50.6 ~see Fig. 4!. The correspondence between branches
the small-gap approximation and forh50.9 can easily be
done if the values of the Nusselt number, frequencies, r
of energies, and patterns~not shown here! are compared for
the higher values of the Rayleigh numbers of the figure. T
correspondence is the following: dashed branches a, b, a
become branches 4, 7, and 3, respectively; and branches
g, and e split in branches 6-6’, 5-5’, 2-2’, and 1-1’, respe
tively. However, the transition of the picture of branches
the small-gap approximation to that obtained forh50.9 is
not so clear in the intermediate range of values of the R
leigh number analyzed.

In Fig. 7 we display for different values oft, the Nusselt
number Nu21, the drift ratev, and the ratio of kinetic en-
ergies r f , as a function of the control parameterd5(Ra
2Rac)/Rac corresponding to the nonlinear solutions that
sult from the preferred mode bifurcating from the conduct
state. Solutions in annulus of radius ratiosh50.6 andh50.5
are considered. The dominant modes fort52800 and 4000,
are normal, and for t58000 and 11 000 they arespiral. In
the description of these results, we refer to solutions t
come fromnormal modes andspiral modes as normal solu
tions and spiral solutions, respectively, although for not v
small values ofd, we already know that thenormal and
spiral character is not mantained. For the chosen values ot,
the branches of normal and spiral solutions present a sim
behavior to branches 1 in Figs. 2 and 4, respectively. T
sudden change in the slope of the Nusselt andr f for the
solution of t511 000, also appears in that oft58000 for
higher values ofd, although with less slope. Our resul
show that, for solutions of the same family, the efficiency
transporting heat decreases whent increases. This effect
according to Ref.@13#, could be due to the increase of th
drifting @see Fig. 7~b!#, which hinders the fluid parcels from
travelling from the hot to the cold boundary. The slopes
small values ofd also depend on the value oft. This differs
from the results of Ref.@8# for the small-gap approximation
and stress-free boundary conditions, where the Nusselt n
ber is at lowest order independent of the Coriolis parame
t. When the radius ratioh decreases, we observe a decrea
in the values of the Nusselt number for the same valuest
andd, provided that the solutions are of the same type. O
again, this can be explained by the increase of the co
sponding drift. For small values ofd, we have also compare
the efficiency in transporting heat of solutions coming fro
the dominantnormalmode and the dominantspiral mode for
the same values oft andh, and we have found that the on
associated to thespiral mode is more efficient.

Since the degree of spiraling of thespiral modes is much
higher than that of thenormal ones@12#, their nonlinear in-
teractions will produce larger Reynolds stresses, resultin
a bigger mean flow@4#. Thus, the growth rate ofr f for the
spiral solutions at small values ofd exceeds those of the
normal solutions. Moreover, the spiral solution at small v
ues ofd exhibits a growth of the ratio of kinetic energiesr f ,
with increasingd stronger than the part of the normal sol
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tions that comes from the ‘‘mean flow solution.’’ Whenh
decreases fromh50.6 to h50.5, the degree of spiraling o
the dominant modes for the same value oft is observed to
increase. This explains our results in Fig. 7~c! for the normal

FIG. 7. ~a! Nusselt number Nu21, ~b! drift ratev, and~c! ratio
of energy associated to mean flowr f , versus the parameterd
5(Ra2Rac)/Rac of the solutions that bifurcate from the conductiv
state forh50.6 andh50.5 for different values oft. These solu-
tions come from the dominant modes of the linear stability of
conductive state,normal for t52800 and 4000, andspiral for
t58000 and 11 000;s50.7.
05631
solutions at small values ofd. However, for the spiral solu-
tions, the slope ofr f and the averaged kinetic energy ass
ciated to the mean flow at small values ofd, decreases when
h does. This suggests that other factors, in addition to
degree of spiraling, must be taken into account if this beh
ior is to be understood. As we commented above, the kin
energy of the fluctuating part shows a dependence on
Rayleigh number similar to the Nusselt number. Howev
the scaling depends on the solution. For example, altho
the Nusselt number of the normal solution fort52800 is
bigger than the spiral one fort58000, the kinetic energy
^Ek8& associated to the normal solution fort52800 is smaller
than that of the spiral one fort58000.

B. Instabilities of the primary solutions

In this section, we analyze the stability of the unifor
rotating waves presented previously. We mainly consider
solutions corresponding to the branches that bifurcate fr
the conductive state and which come from a dominant m
in some region of the space of parameters. As we co
mented above, in Fig. 1, we indicate by solid circles t
values of the Rayleigh number where the primary solutio
for t58000 and for different values ofh, destabilize. All
these solutions arise from the preferred modes for the cho
values ofh. The figure shows how the stability region of th
solutions reduces considerably near the transition point,hc
50.605, corresponding to the crossing of the two differe
families of dominant modes. Near this point, the prima
solutions destabilize with a finite value of the parameterdm ,
irrespective of whether they come from aspiral or from a
normal mode. For both smaller and higher values ofh far
from hc , we obtain a zone where the selected primary so
tions lose stability by means of a superharmonic instabi
(dm50). For values ofh very near 1, the value ofdm is
finite but relatively small, agreeing with our results for th
small-gap approximation for this value oft and wave num-
ber corresponding to the critical valueac512.8. In this ap-
proximation, we find that the mean flow solution destabiliz
with a value ofd'0.007, where the wave numbers excit
by using an expression similar to Eqs.~4a! and ~4b!, are (n
1d)a. As discussed in Sec. II, from the values of the p
rameterdm ~also indicated in the figure! responsible for the
bifurcation, the wave numbers excited are known, and
corresponding eigenfunction at the bifurcation point can
examined in order to check which wave number of the p
turbation has associated the maximum amplitude@see Eqs.
~4a! and ~4b!#, and what the corresponding pattern is lik
For the solutions that arise from the dominant modes neahc
~finite dm), we obtain that for those coming from thespiral
modes ~on the left of hc), the maximum coefficients
(bn j* ,cn j* ) of the eigenfunction correspond to the indexn
51, so the perturbation is dominated by a periodic struct
of wave numberM1m, with M being the wave number o
the primary solution. We have also ascertained that the a
ciated pattern is ofnormal type. For the solutions that com
from the columnar modes~on the right ofhc), the maximum
coefficients correspond to the indexn521, so the dominant
wave number in the perturbation isM2m, and in this case

e
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THERMAL ROSSBY WAVES IN A ROTATING . . . PHYSICAL REVIEW E63 056312
the associated pattern is ofspiral type. Thus, it can be sum
marized that in this region~near the crossing of different typ
of dominant modes!, for a fixed value ofh, a nonlinear so-
lution coming from a dominant mode of one type,spiral or
normal, is destabilized by a perturbation of the other type
mode~normalor spiral, respectively!. We have also checke
that for this value of the Coriolis parameter,t58000, the
wave number of the perturbation having the maximum a
plitude always corresponds to one of the other type of mo
that has already bifurcated from the conductive state for
same value ofh @see Fig. 5~a! in Ref. @12##.

In Fig. 8, we present the results for the case oft52800.
The marginal curve of the conductive state is represented
a solid line, and in this case the crossing of the differ
dominant modes takes place athc50.228. The wave numbe
of the preferred mode~spiral! before the transition isM
54, and that of the preferred one~normal! after the transi-
tion is M56. Again, near the transition point, the nonline
solutions coming from the preferred modes destabilize wit
finite value ofdm . Examination of the eigenfunction corre
sponding to the eigenvalue responsible for the bifurcat
shows that the solutions coming from one type of mode
destabilized by a perturbation dominated by the other ty
When h increases, we obtain a large zone where the bi
cation is superharmonic (dm50); and similar to that ob-
tained fort58000, whenh is near one, the solution destab
lizes again with a finite and small value ofdm , agreeing with
the results of Ref.@10# for the destabilization of the mea
flow solution for this value oft and wave numberac
58.68.

In a previous paper@26#, we analyzed some seconda
solutions near the secondary bifurcation. The results w
obtained by using a nonlinear time dependent code, sim
to the one in Ref.@17#, which integrates the Navier-Stoke
equations in primitive variables by employing a second-or
stiffly stable splitting method. One of the cases studied w

FIG. 8. Critical Rayleigh number as a function of the radi
ratio for t52800 ands50.7. Solid circles denote the values of th
Rayleigh number for which the solution that bifurcates from t
marginal curve destabilizes. The numbers near these circles ind
the value ofdm responsible for the instability.
05631
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the solution that bifurcates from the uniform drifting wave
wave numberM521, which comes from the dominantspiral
mode forh50.6 andt58000~see Fig. 1!. The value ofdm ,
responsible for the bifurcation, is in this case 4/21, and as
have commented above, the wave number of the perturba
having the maximum amplitude isM525. We observed tha
the secondary solution presented a set of 25 pairs of roll
the outer part of the layer and a set of 21 in the inner p
each set being propagated at its own speed. Thus, the
ondary solution has a dynamic similar to the double-colu
convection obtained by Ref.@10# for the problem in the
small-gap approximation with conical ends. Another ca
considered was the secondary solution that bifurcates f
the uniform rotating wave of wave numberM517 coming
from the dominantnormal mode for h50.6 andt52800
~see Fig. 8!. The convection in the primary solutions, ju
before the bifurcation, was confined in the outer part of
layer. The secondary solution, appearing from a super
monic bifurcation (dm50) oscillated between this structur
and one in which convection was restored in the whole of
layer. This feature resulted in a notable increase of the h
transport. The effect of the instability is then similar to th
vacillating instability described in Ref.@9,10#.

As well as considering the instabilities of the primary s
lutions when the Rayleigh number is increased from its cr
cal value, we have also analyzed for a fixed value of
Coriolis parametert, the stability zone of theM-rotating
waves coming from the dominant modes for some value oh
when, fixing the value ofM, the value of the radius ratio
varies beyond the range where the correspondingM mode is
dominant ~sideband stability!. In a radius ratio Rayleigh
number diagram, the side stability zone of aM-primary so-
lution is always bounded by curves arising at the cross
points between the critical curve of theM mode, and the
curves of the two adjacent dominant modesMl and Mr ,
when h is decreased and increased, respectively. If, nea
crossing, we calculate from the values ofdm responsible for
the sideband instabilities the wave numbers excited,
from the corresponding eigenfunction we check which o
has maximum amplitude, the wave number of the adjac
mode at the crossing is always obtained. Moreover, when
estimate from the imaginary part of the eigenvalue the f
quency of this harmonic, we obtain that of the adjacent mo
at the primary bifurcation. Thus, as expected, the interac
of the neighbor modes, nonresonant in all the cases stud
is responsible for the sideband instability. However, t
shape of these side stability boundaries depends on whe
the value ofh is near the crossing of the two types of di
ferent dominant modeshc .

If the primary solution considered comes from a domina
mode forh far from hc , the side boundaries have a par
bolic shape, irrespectively of whether the dominant mode
normal or spiral. See, for example, in Fig. 9 the stabilit
limits ~solid circles! of the primary solutions of wave numbe
M520 for a Coriolis parametert52000. Whenh varies, the
wave numbers of the dominant modes of the same family
sequential (Ml5M21, Mr5M11). Then the value ofdm
of the preferred sideband disturbance, near the value of
intersection of the adjacent modes, isdm51/M on both

ate
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sides. So, far fromhc , for the values ofh corresponding to
the crossings of the preferred modes, there exist zo
~V-shaped in the diagramh2Ra! where at least two uniform
drifting states with sequential wave numbers are sta
When the Rayleigh number is increased from the value
the crossings, we obtain for the solutions coming from
normalmodes~see Fig. 9!, that on the left-side boundarydm
increases (m increases sequentially! in such a way that the
disturbance is dominated by the coefficients associated to
wave numbers of the dominant modes for the values oh
that are reached by this boundary, or for even smaller val
However, the right-side stability boundary corresponds t
value ofdm51/M , and the disturbance is dominated by t
wave numberM11. In fact, for the solutions coming from
the normal modes, if from the values ofM andh, we esti-
mate the value of the equivalent wave numbera of the so-
lutions in the small-gap approximation, we retrieve the
sults corresponding to the sideband instabilities of
symmetric thermal Rossby waves discussed in R
@9,27,10,28,29#. For a value of the Prandtl numbers50.7,
the referred works found that the left sideband instability i
diagram (a, Rayleigh number! corresponds to infinitesima
values of the Floquet parameter and has the tendency t
crease the value ofa slightly, shifting the solution towards
the stable zone, but very close to the left-side stabi
boundary. On the other hand, the right sideband instabi
associated to finite values of the Floquet parameter, tende
shift the unstable solution towards one with a value ofa
smaller thanac but near it. Notice that for a fixed value o
M, increasingh has the effect of decreasinga, and that for a
fixed value ofh, increasingM has the effect of increasinga.

In Fig. 9 we also indicated by solid triangles the limits
the stability zone of the solutions that belong to a bran

FIG. 9. Stability boundaries of rotating waves with wave nu
ber M520. Solid circles for solutions in the branch that bifurcat
from the critical curve for this wave number, and solid triangles
the solutions in the lower branch of the disconnected curve sim
to the one in Fig. 2. The values ofdm responsible for these limits
are given at the stability boundaries.Smeans that the stability limit
corresponds to the saddle-node point of the disconnected curve
values M of the critical curves are also indicated;t52000 and
s50.7.
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equivalent to branch 2 of Fig. 2. Thus, in the intersection
the stability zones limited by solid circles and solid triangle
two different stable drifting waves with the same wave nu
ber exist. For values ofh,0.72, the patterns of the rotatin
waves of wave numberM520 that belong to the branch tha
bifurcates from the conductive state and those of the lo
branch of the disconnected curve are similar to their co
terparts in Fig. 3 (t52800,h50.6), i.e., the solutions bifur-
cating from the conductive state turn into a solution with t
convection eddies shifted to the outer part of the layer wh
the Rayleigh number increases; whereas for the other s
tions this shifting is to the inner part. However, for a value
h between 0.72 and 0.728, a nongeneric pitchfork bifur
tion occurs, and for values ofh.0.728, the solutions bifur-
cating from the conductive state now turn into a soluti
with the convection eddies shifted to the inner part of t
layer when the Rayleigh number increases, and for the o
solutions this shifting is to the outer part.

The shape of the side stability boundaries of
M-rotating wave, which comes from a preferred mode fo
value ofh nearhc , is no longer parabolic. In Figs. 10~a! and
10~b!, we present for the values of the Coriolis parametet
58000 andt52800, respectively, the stability limits of th
primary solutions arising from both the dominantspiral
mode ~solid circles! and from thenormal mode ~solid tri-
angles!, which dominate for the values of the radius ratioh,
just before and just afterhc . Thus, fort58000, the stability
zones correspond to drifting states of wave numbersM
521 ~spiral! and M527 ~normal!, and for t52800, they
correspond toM54 ~spiral! and M56 ~normal! rotating
waves. The values ofdm responsible for the stability bound
aries are included. In these figures we have also represe
with dashed and solid lines, some of the critical curves of
spiral and normal modes, respectively, whose interactio
control the sideband stability of the selected primary so
tions. The values of the wave numbers of these modes
also included.

For t58000, the left branch of the stability limit for the
solution coming from thespiral mode (M521) is parabolic,
whereas the right-side branch becomes practically indep
dent of the Rayleigh number. For the solution that com
from the normal mode (M527) we observe a shift of the
stable region rightward, since the left-side branch has mo
to the right. The interaction between thenormal M527
mode and thespiral M521 and 22 modes seems to be r
sponsible for this behavior, as can be deduced from the
ues ofdm at this branch. Notice that there does not exist a
range of parameters for which both theM521 and theM
527 rotating waves are stable.

The shape of the stability zones for the solutions com
from the two type of modes near the transition point for t
Coriolis parametert52800 is completely different. In this
case, the stability zone of the solution that comes from
spiral mode is shifted leftward. The interaction between t
spiral M54 mode and thenormal M56 mode causes the
right-hand stability branch for theM54 drifting wave to
move to the left (dm52/4). With respect to the stability o
the solution of wave numberM56, the left-side branch ha
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a parabolic shape, and the values ofdm reveal that the inter-
actions between theM56 normal mode and theM54 and
M53 spiral modes govern this stability boundary. Th
right-hand side boundary has an almost vertical conc
form. The intersection of the stability regions of theM54
andM56 drifting waves is now a thin stripe region leanin
to the left ofhc .

IV. CONCLUSIONS

In this paper we analyze nonlinear solutions related to
two types of dominant modes,normal andspiral, identified
in our previous paper@12#. Particular effort is made to con
nect the solutions in the annulus with those obtained in
small-gap approximation, in order to find out to what exte
this approximation can be used. Our nonlinear results sh
that the small-gap approximation might serve to predict

FIG. 10. Stability boundaries of the rotating waves with t
wave numbers corresponding to the preferred modes for valuesh
just before~spiral! and just after~normal! hc , for ~a! t58000 and
~b! t52800. The stability limits of the solution before~after! hc are
represented by solid circles~triangles!. The values ofdm respon-
sible for these limits are given on the stability boundaries. T
critical curves of some azimuthal modes~the value ofM is indi-
cated! are depicted by dashed~spiral! and by solid~normal! lines;
s50.7.
05631
e

e

e
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dynamics in the curved annulus, whenever the domin
mode in the annulus was ofnormal columnar type, and the
value of the radius ratio was far enough from the value ofhc

for the Coriolis parameter considered. Nevertheless, the
fects of the breaking of symmetryk must be taken into ac
count to describe the scenario of branches and the featur
the solutions associated with thenormal columar modes.
When the dominant mode isspiral, we show that in this case
the connection should be carried out with the solutions
lated to the dominantk invariant mode~second radial har-
monic! in this approximation. However, we find that fo
these solutions, the scenario of branches transforms sig
cantly when the curvature is included and the value ofh
starts to decrease from the assymptotic value of one.

The global properties of the primary solutions corr
sponding to the dominantnormal andspiral modes for dif-
ferent values of the Coriolis parameter and radius ratio,
described at the end of Sec. III A. For the value of Pran
number considered in this paper, the effects of rotation u
ally lead to a decrease in the heat transport by convectio
the onset, which agrees with the results obtained by Ref.@13#
in spherical shells for fluids of Prandtl numbers51. Since
these primary solutions correspond to different values of
Coriolis parameter and have different wave numbers, i
interesting to analyze the global properties, considering o
the influence of the type of mode they arise from. To do th
we calculated the rotating waves, which came from t
modes, one of each family, with the same wave number
the same values oft and h, and we found that for smal
values of d, the solutions that stemmed from thespiral
modes were more efficient in transporting convective he
had associated a smaller drift, and the contribution of
axysmmetric flow to the velocity field was bigger. Since t
Coriolis parameter, radius ratio, and wave number for th
solutions were the same, the better correlation between
radial velocity and the temperature field shown by thespiral
modes, could account for the greater efficiency in transp
ing heat.

Our paper is not restricted to a calculation of the prima
solutions coming from preferred modes. Other rotati
waves with the same wave number as the primary soluti
are obtained and their nonlinear properties described.
though most of them are unstable, the more information
have about these solutions to the problem, the easier it i
explain the more complex behavior that the solutions of
system may exhibit after the secondary bifurcations. On
hand, we find solutions characterized by a weak mean fl
a remarkable heat transfer, and with a simple or double n
distortioned structure of columns, and on the other ha
solutions with a component of the mean flow containi
more than 50% of the total kinetic energy, even for values
the Rayleigh number lesser than two times the critical va
@see Fig. 4~c!#. Notice how the effect of the rigid lids is no
enough to supress the strong zonal flows of some of
rotating waves. However, we suppose that, for very sm
supercritical values of the Rayleigh number, the nons
boundary conditions of our model prevent us from obtain
solutions with mean flows as strong as those in the work
Ref. @4# in a spherical shell with stress-free boundary con

e
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tions and the same Prandtl number as the one used her
We analyze in detail the stability zones of the prima

solutions and we also indicate the characteristics of the m
unstable perturbations. The results of the linear stab
analysis of the conductive state are again essential. Obtai
hc is not only critical for elucidating which type of family o
modes is the dominant one and what the features of the
linear solutions are, but also the proximity of the value of t
radius ratio to this point has a profound effect on the sh
of the stability regions, as well as on the type of the seco
ary bifurcation of the primary solutions. Our results sho
that primary solutions with a radius ratio nearhc are likely to
develop double-column convection, whereas primary so
tions coming from dominantnormal modes with a radius
ratio sufficiently bigger thanhc , have a tendency to produc
vacillating convection.

The model of a fast rotating annulus considered in t
paper enables us to study in detail nonlinear convection
wide range of the values of the parameters, for a fluid
moderate Prandtl number and moderate values of the R
te

id
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leigh number. Some of the behavior observed in this pa
can also be identified in rotating spherical shells, for e
ample, the generation of strong zonal flows, the tendenc
split into multicolumns, or the heat transfer dependence w
the Rayleigh number when the Taylor number varies. Th
we trust that our results may provide some clues about
nonlinear solutions and higher bifurcations associated w
the columnar convection in spherical shells.
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