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Thermal Rossby waves in a rotating annulus. Their stability
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Nonlinear thermal convection in a fast rotating annulus about its axis, with slightly inclined ends, radial
gravity and heating, is studied numerically for a fluid of Prandtl number0.7 and different values of the
radius ratio and rotation rate. The properties of the rotating waves that appear after the Hopf bifurcation of the
conductive state are analyzed. Near the critical Rayleigh number, different types of solutions with the same
wave number coexist, and they are classified as a function of their connection with the two types of modes
identified in the linear analysis for this Prandtl number. For different rotation rates, the stability of the primary
solutions as a function of the radius ratio is also studied. The shape of the stability regions and the type of
dominant disturbances that limit these regions are very sensitive to the proximity to the value of the radius ratio
for which the type of dominant mode changes.
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[. INTRODUCTION be two dimensional, independent of the coordinate in the
direction of the axis of rotation, and then, the assumption of
The understanding of thermal convection in rotatingnearly geostrophic solutions can be md8&¢ This system
spherical Boussinesq fluid shells is the first stage of an extherefore admits columnar solutions such as those in the
tremely ambitious and nowadays impossible project, inspherical shell. Furthermore, if the end boundaries are not
which the dynamics in planetary and stellar atmospheregarallel, a Rossby wavelike dynamics must be expected.
including other aspects such as variations of the density, raviuch work has been carried out on such a system using the
diative transport of the heat, and magnetic-field effects, werapproximation of small gaf8—11]. However, with symmet-
analyzed(see the reviewWl]). In regard to that problem, it is ric boundary conditions at the sidewalls, and ends without
known that the onset of convection is characterized by theurvature, this approximation prevents the appearance of the
presence of different types of modes, depending on the rotapiralling columnar modes obtained in spherical shé&|g].
tion rate and the Prandtl number of the fluj@]. The In our previous papefl2], the onset of convection in a
asymptotic analysis of the nonaxisymmetric problem forfast rotating annulus with slightly inclined top and bottom
high rotation rateg3], assumes a simple two-dimensional lids and radial gravity and heating was studied. In our model,
roll-type structure without a significant distortion, known asthe curvature of the annulus was retained, and the radial
normal columnar convectiof#]. For small Prandtl numbers dependence was analyzed as a function of the gap. Different
and low rotation rates, the preferred modes, the so-calleBrandtl numbers, representative of large, moderate, and low
equatorially trapped modes, are fast drifting waves consistvalues were considered. For moderate and high Prandtl num-
ing of cells attached to the outer boundary at low latitudesbers, two different families of dominant columnar modes
They correspond to inertial convecti@h,6]. When the rota- were found: the modes attached to the inner wall and slanted
tion increases, there is a transition to another type of convede the prograde direction, and the almost straight modes with
tion, the spiralling columnar modes, which span azimuthallyconvection occupying the entire layer. According to Réf,
various wavelengths from middle latitudes to the equatorialve will refer to these modes apiral columnar modes and
region[4]. Transition modes between the equatorial-trappediormal columnar modes, respectively. For these Prandtl
modes and the spiralling columns, exhibiting multihumpnumbers, we showed that the instability is induced by both
structure, have been identified recently by Réf.for inter-  thermal and rotation effects, and similar to REB], we
mediate values of the rotation rate. Although the onset otalled the marginal waves, thermal Rossby modes. For small
convection has been widely studied, this is not the case witfPrandtl numbers, we found that, independently of the rota-
the nonlinear problem of finite amplitude convection. Due totion rates analyzed, the dominant modes, which correspond
the numerical effort that three-dimensional computations reto the inertial solution of the Poincaseguation, were ofior-
quire, it has only been partially explorédt,2,7] among oth-  mal columnar type. The linear modes for small Prandtl num-
er9. For this reason, simplified geometries, providing a de-bers thus differed substantially from those obtained in
scription of the dynamics with lesser numerical effort, havespherical shells
been adopted in order to mimic some regions of the full The works of Refs[6,13] analyzed finite amplitude con-
spherical shell. vection in rotating spherical shells in the range of parameters
Thus, the problem of thermal convection in rotating cy-where the linear modes were columnar and for values of the
lindrical annulus has become a prototype for the study of thé&kayleigh number not very far from the critical value. They
dynamics in rotating spherical fluid shells as far as the equafound that no matter what the Prandtl number, the meridional
torial region is concerned. For sufficiently high rotation circulation is very weak. However, for Prandtl numbers of
rates, the Taylor-Proudman constraint forces the motion torder unity or less, the differential rotation dominates the
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drifting spiralling convection and was nearly independent ofin the rotating frame of reference of the cylinder, wikiT

the coordinate in the direction of the axis of rotation; =T,—T, and »=r;/r,. The dimensionless Navier-Stokes

whereas for large Prandtl numbers, the flow is dominated bgquations in the Boussinesq approximation, written in the

the normal columnar convection with a weak differential ro-rotating frame of reference, and the heat equation, are given

tation strongly dependent on this coordinate, and originatetdy Egs.(2.4) of Ref. [12]. The gap width of the layeD,

by a thermal wind mechanisfi4]. Thus, from these results, D?/«, and AT were used as scales for length, time, and

and those in Ref{12], it follows that preference should be temperature, respectively, whekedenotes the thermal dif-

given to the annular system for modeling the dynamics in gusivity.

spherical shell of fluids with Prandtl numbers of order unity. If we require y<1 and high rotation rates, previous the-
In this paper, which is a logical continuation of REE2],  oretical and numerical resul{$,15,14 justify the assump-

we consider the same annular configuration, and we are irtion of nearly geostrophic solutions. Then, we have assumed

terested in the nonlinear properties of the convection, whichhe following decomposition

will appear in the form of rotating waves after the Hopf

bifurcation of the conductive state. All the results are for u=f(r,t)e,+ VX[ g(r,0,t)&]+u(r,0,z,t), (2.2a

Prandtl number 0.7. For this value of the Prandtl number, we

obtained that small values of the Coriolis parameter and high

values of the radius ratio favor thrmal columnar modes,

whereas thespiral modesend to be dominant for high val- ) )

ues of the Coriolis parameter and smaller values of the radiy¥nere the —azimuthal average ofy is null, and

ratio. Rotating waves resulting from or related to these twal(r,6,z,t),0(r,0,z,t) are ordery. So, at leading order ity,

types of modes will be analyzed. The two dimensions ofthe azimuthal average af, is f(r,t). Equations forf, i,

these solutions and their simple temporal dependence allowand © are obtained from the azimuthal average of the

an analysis of their stability, which has also been carried outtomponent of Navier-Stokes equations, theomponent of
The remainder of the paper is organized as follows. Théhe vorticity equation, and the heat equation, where we ne-

basic model equations and the numerical techniques used gbect terms of the ordey everywhere except in the Coriolis

calculate the rotating waves, and to analyze their stability aréerm. Following Ref[8], if we average these equations over

summarized in Sec. II. Section Il is divided into two parts. thezinterval and take into account the boundary conditions,

In the first part we focus our attention mainly on two caseghe equations are written

representative of the nonlinear solutions that result from both

T=Tr)+0O(r,6,t)+0(r,0,z,1), (2.2b

the normal and thespiral modes, and we describe the non- 2, 1 , 1

linear properties of these waves. In the second part we deal ;&I—V_ f_}PH Vi F‘?H‘/’ ' (2.33
with the stability of the primary solutions. The paper con-

cludes with a discussion in Sec. IV. Ra 1

II. BASIC EQUATIONS AND NUMERICAL METHOD

1
2 2
We consider a fluid contained in a cylindrical annulus of + L [VEtagy—1a,Viy]

heightL(r) decreasing outwards, rotating about its axis of
symmetry with a fast rotation rat@, and the tangent of the
angle of inclinationy of the lids with respect to the horizon-
tal, y, being very small §<1). The mean height of the
annulus will be denoted by,. The gap of the annulus is
D=r,—r;, wherer, andr; are the outer and inner radius,
respectively. The temperaturég andT; (T;>T,) are kept
constant on the outer and inner sidewalls, and the lids are
considered thermally insulating. Our model assumes a con-
stant effective radial gravity inwards$., obtained from the
average of the radial gravity and centrifugal force. The ve-
locity field satisfies nonslip boundary conditions at the side-
walls, and has a vanishing normal component at the lids. Aghere V2 denotes the horizontal Laplacian operaféf

is discussed in detail in Reff3], boundary conditions on the =(1/r)3,(r 3,) + (LI ?) 3%, V2 =(1Ir)d,(rd,)—(1Ir?), and
tan%?ntlal components are irrelevant as long @sing  p ‘is the projection operator that extracts the zero azimuthal
>E™" holds, whereE is the Ekman number and is the 1,46 (see Ref[12] for detaily. The dimensionless param-

Pran_dtl number defined below._ . ) eters in the above equations are the Rayleigh number Ra, the
Since y<1, the system admits a basic conductive state pyandt numberr, and the Coriolis parameter, defined as

1
b CO U A )

(2.3b
L1 1
ﬁt®:Vh®_2—&‘gl/f_f —50(9
reln » r

1
+F[(90®ﬁr:,//— 3,0z, (2.30

Inr/r; aATgD? v _4y0D°

u.=0, (2.9 R?‘F_T, o=_, 7= Ly

T(r)=T,+AT

Innp "’
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wherea is the coefficient of thermal expansion ands the 1
kinematic viscosity. Similar equations, without the Coriolis Nu=1+7——In73(0),
term, were used in Ref17] to study the nonlinear dynamics K
of the Taylor columns.

The geometry of the domain implies thetand ® are where the symbol{ >ro denotes the average over the outer
periodic in #, and due to the decompositiorf®.2g and  surface. To characterize the contribution of the mean zonal
(2.2b), as was detailed in Ref12], the boundary conditions flow f over the velocity field, we will introduce the ratig of

onr; andr, are written the kinetic energ\e; associated td, to the total kinetic en-
ergy E;,
f=0=y=0,4=0. (2.30
Equations(2.39, (2.3b, and (2.39 together with the :<Ef>
boundary conditions, posseS€(2) symmetry, i.e., they are " (E)’

invariant under rotations

where the symbol) now represents the average over the
Ryyi(1,0) (1,0 0),  (,0,0)—(1,4,0). winere e symibot) now rep .

Other authors have analvzed the same problem. but usi It is known that the primary convective solutions have the
- analy '€ p ' &rm of rotating waves in the rotating frame of reference of
the small gap approximatiof0]. In the limit of the small the cylinder. To obtain a solution of this type, we have ex-

gap width, a plane layer approximation can be used. If we : i

denote byy andx the azimuthal and radial coordinates, re- pandedf, ¥, and® in terms of complete systems of func
. . . ; ; tions,

spectively, defined relative to the midplane, the resulting sys-

tem will have the translation symmetry in tlyedirection T,

and an additional symmetry not possessed by equations ’
(2.33, (2.3b), (2.309, and(2.3d. They are invariant under the f(r,t):jgz a;p;(x), (2.4
reflection

KZ(X,V)*(_X'Y)y (f,l//,)—>(f,—1//'—)_

N J
W(r,0,)=2 > by exdinM(0—wt)]hj(x)+c.c.,

As a consequence of this reflection symmetry, the symmetry n=1j=4
group of the problem in the small-gap approximation is the (2.4b
groupI'=S0O(2) X Z,. In this problem, when perturbations
of wave numbera are considered, the Hopf bifurcation of
the conductive state leads to primary solutions, which are O(r,0,t)=
rotating waves of wavelengta=2m/«. For the values of (2.49
the Coriolis parameter considered in this paper, and for the '
critical value of a=«a, these periodic solutions possess a ) ) )
symmetry that is an elemeni(to) e ' St, such that the wherex is relate_d to the radial coordlnateas X= 2r—(1
spatial action ofx is exactly compensated by a phase shift* 7)/(1—7), M is the wave numbery is the drift rate of
to="7/2, whereT is the period of the solutions. So, the ro- the wave, prograde iw>0 and retrograde ifw<0, and
tating waves are invariant under tishift-reflectoperation  @j, Pnj, andc,; are time independent coefficients, the lat-
T.x. These solutions have been callggmmetric thermal ter two being complex. The functiotg(x) andp;(x), speci-
Rossby wavesn the works of Busse and collaborators fied in Rf—:f.[lz],_are_ linear combinations of the Tchebyshev
([9,10] among others ponnom|a~Is satisfying the radial boundary conditions.

Notice that, if instead of Eq2.29, the decomposition of Letting #= 6— wt, we obtain from Eqs(2.339, (2.3b), and
the velocity fieldu=V X[ x(r,6,t)&,]+ u(r,6,z,t) is used, it  (2.30 a set of steady equations, which have been folved
is necessary to introduce an additional boundary conditiomumerically using a spectral Galerkin-Fourier techniqué in
that ensures the periodicity of the pressure gradient in thend a collocation method x Because of the rotation invari-
azimuthal direction'see Ref[18] for a general discussign ance, we have fixed the phase of the solution by prescribing
The correct boundary conditions for the small-gap approxia relation between some coefficients and using the corre-
mation of the problem with rigid sidewalls are given in Ref. sponding equation to determine For particular values of
[19]. Another recognized problem in which a similar bound-the Prandtl numbew, the Coriolis parameter, and radius
ary condition is needed is the two-dimensional Poiseuilleratio %, a continuation procedure has been used for the loca-
problem with constant average pressure gradient paramettion of the equilibria solutions to study their dependence with
zation, when a stream function formulation is used. The adrespect to the Rayleigh number. The curves of solutions have
ditional boundary condition for this case is discussed in Refsbeen obtained using a predictor-corrector continuation algo-
[20] and[21]. rithm (see Ref[22] for details.

As a measure of the heat transport by convection, we will Similar to Ref.[21], the stability of a rotating wave of
use the Nusselt number Nu evaluated at the outer cylindricakave numbeM has been analyzed by superposing onto it
surface, which has the following expression infinitesimal perturbations of the form

M =z

J
22 Cn,jeXinM (60— wt)]p;(x)+c.c.,
i=

n=0
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NI 125000 —— — ‘ —
(o= > by exdi(n+d,) Ma]h;(x)eM, I 0
n=—N j=4 " “00 .0
(2.59 120000 + ’ .
N S
On(r o= > > chexdi(n+dy)Ma]p;(x)er, S 115000
n=-Nj=2 " 3
(2.5b) =
S0
) _ ) 'S 110000
whered,,=m/M (m is an integer that varies between 0 and E\
M—1), and solving the corresponding eigenvalue problem &<
for every value ofm. If m=0, it is necessary to eliminate 105000
from the expansion of the perturbatiaif the term corre-
sponding to the index=0, and to add 100000
J
* — * Aot
f (r,t) JZZ aJ pJ(X)e " (25© 95000 L 1 L L L L 1 L 1 \ 1 L L
00 02 03 04 05 06 07 08 09

If for some value ofm, the real part of\,, is positive, the Radius ratio

M-periodic drifting wave is unstable, otherwise it is stable. FIG. 1. Critical Rayleigh number as a function of the radius
When some\,, crosses the imaginary axis, a bifurcation oc-ratio for =8000 ando=0.7. Solid circles denote the values of the
curs. Rayleigh number for which the solution that bifurcates from the

The casem=0 corresponds to perturbations with the marginal curve destabilizes. The numbers near these circles indicate
same wave number as the basic flow, and we will refer tahe value ofd,, responsible for the instability. The streamlines in
them as superharmonic perturbations. In this case, we alwayke rotating frame of reference of the cylinder of two nonlinear
obtain a zero eigenvalue corresponding to the trivial phaseSO|uti0nS at R& 100000 are also included. These solutions come
shift solution; an additional zero eigenvalue indicates &fom the dominant modeM =10 (spiral) for =0.35 andM =37
saddle-node bifurcation. (norma) for #=0.7.

For the casen# 0, since the linear operator describing the | ) ] ) )
stability problem is real, the eigenfunctions for the problemind to the analysis of the nonlinear dynamics associated to
with d,,_, can be obtained by conjugating those with: the two types of modesiormal and spiral, identified in the

moreover,, . is the complex conjugate of,,. Then, to linear stability analysis of the conductive stdte?] for a

analyze the stability properties and bifurcations of thefluid of Prandtl numberr=0.7. The range of parameters con-

steadily drifting waves, it suffices to consider perturbationsSidered is the same as in our previous pgfi€}, and covers
with me [1,M/2] if M is even, and witme [ 1,(M — 1)/2] if values of the Coriolis parameter, between 2000 and 11 000

it is odd. We will refer to these types of perturbations as@nd radius ratiosy>0.1. Our results in the quoted paper

subharmonic perturbations. Notice that iaperiodic drift- ~ Show that for fixed values of, the spiral modes are pre-

ing solution with drift ratew suffers a bifurcation of this type €'Ted for small radius ratios. However, foj>0.15 and

[%(),,) =0], additional wave numbers,=nM+m andk’ 72300, it was found that there always exists a value of the
m. ' n

=(n+1)M—m are excited at linear order in the bifurcated radius _ratio,nc, from which the preferreq mode rormal
solution, the corresponding frequencies being=k, according to the results of the problem in the small-gap ap-

“3(A) and .=k @+3(\.). Then, in a bifurcation of proximation. The higher the Coriolis parameteris, the
m n~ %n m/ - )

; . o . higher the valuey. is. Thus, in Fig. 1, where we present for
this type, _the b?‘S'C wave per|o_d|C|tyrr2M is broken and a . 7=8000 the marginal curve of the conductive state as a func-
new solution with a larger period emerges. At large ampli-

tude, the basic wave number of the bifurcated solution is th%'ho(;l O;I?eerr::d;usssgﬁgéghet Ova::]uee ti.,fvcolsf;)rﬁﬁgé-roof 'Irl]:ﬁgs;e the
greatest common divisor @h and M. P '

In the ranae of parameters studied. and for the F>randt?treamlines in the rotating frame of reference of the cylinder
9 P o of two nonlinear solutions, are shown in this figure. These
number considered=0.7, a resolution oN=8 andJ=24

suffices to give more than three significant figures in th solutions come from the preferred modes of the linear prob-

) . Sem at the radius ratiog=0.35(spiral) and =0.7 (normal),
e s . s dhe coresparing ieve nurers b 10 andh 31

otaling waves. gives espectively. Since the Rayleigh number =Ri#®0 000 of
significant figures for the value of the Rayleigh number, an

. . hese solutions is near the critical value at everythese
more than four for théi(Ay) at the points where a bifurca- streamlines resemble those of the linear modes. All the

tion oceurs. streamlines plotted in the figures of this paper correspond to
the contour plots of
ll. RESULTS
r
In this section, we present the results, for values of the ,//(r,”é):,r/,(rjg)_f f(r)dr; (3.2
fi

Rayleigh number near the onset of convection, correspond-
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so, ¢/ is zero at the inner surface. Solid lines will denote connected mainly with those obtained in the small-gap ap-
positive values and dashed lines negative ones. In Fig. 1, thgroximation of the problem withe=0 (without curvaturg
points where the solution that bifurcates from the conductiveanalyzing the effect of breaking the midplane symmetry. For
state at the critical Rayleigh number loses stability are repthis reason, it is necessary to calculate solutions of this prob-
resented by solid circles. The corresponding values of théem, and this has been done using the same numerical tech-
parameted,, responsible for every bifurcation are also indi- niques as described in the previous section. The correspond-

cated. ing equations can be found in the numerous works of F. H.
As expected, forp—1 and for a fixed value of, we  Busse and collaborators, and are not reproduced here.
found that the critical Rayleigh number of tim@rmal con- In Figs. 2a), 2(b), and Zc) we display with solid lines,

vection R&” tends to the critical Rayleigh number for the the Nusselt number Nul, the drifting ratew, and the ratio
small-gap approximation K¥". In addition, the critical ~of energies's, of solutions corresponding to rotating waves
wave numbeM (" and the corresponding drift rate fo.<1 ~ Of M =17 for #=0.6 and7=2800. The solution that corre-
can be estimated Uyl(n)%a(sgl)r_andw(n)%c(sgl)/r_ where sponds to the branch bifurcating from the conductive state at

(sql) (sql) coe c N ’ Ra.=25439, comes from the dominant mode of the linear
ag ¥’ andcg ¥ are the critical wave number and the corre-

sponding drift rate for the small-gap approximation andproblem at these values ofand 7. This mode is ohormal
ponding 9ap app ' type. In order to make clear the above quoted connection of

wherer = (1+ 7)/2(1- 7) is the mean radius of the annular these solutions with those of the small-gap approximation,
shell. . _ we have also displayed in Fig(a, with dashed and dotted

If for »—1 and for a fixed value of, the dominant modes |ines, the Nusselt number of these latter solutions for the
among thespiral ones are obtained, we observe that the criti-sgme value of and wave number %) =8.68 correspond-
cal Rayleigh number R of this type of modes tends to the ing to the critical value for thig; the critical Rayleigh num-
critical Rayleigh number &%) of the « invariant modes of  per is R& ) =24 624. Dashed lines represent enmetric
the problem in the small-gap approximation. Since the pothermal Rossby wavewhich present a symmetric mean flow
tential z,/;f';md the temperature field of these modes are Zero profile as a consequence of beirfy,x invariant @
at the midplane, they will be referred to as Serond radial  —27/4). The dotted line branch represents solutions that
harmonics The wave number and drift rate of tepiral  gre no longefT .« invariant. This branch appears in a sec-
modes forp~1 can now be estimated By~ a*%)r, and  ondary bifurcation of the branch of solutions that bifurcate
wgs)%c(csgz)/r_, Whereagsgz) and C(CSQZ) are the critical wave from the conductive state; a pitchfork that breaks Thgx
number and the corresponding critical drift rate of segond ~ symmetry of the primary solutions and gives rise to the so-
radial harmonic Provided that the values of*%) and calledmean flowsolutions in Refs[9,10]. When the curva-
a,[(:SQZ) are different, the wave numbeévl of the dominant ture of the annulus is considered, the symmetrof the

normalmode, and of the dominaspiral mode for the same SYStém is broken, and the bifurcation can be seen as the
value of 7, are different. Wheny decreases, the critical Ray- Imperfect bifurcation observed in Fig(d&, with the corre-
leigh number for thespiral modes decreases and the critical SPOnding splitting of the dotted line branch in branches 1 and
Rayleigh number for th@ormal modes increases, and for a 2- 1his feature was anticipated in Rg£0], although in that
value 7., the spiral modes become the dominant modes.WOrk. by also considering a small-gap approximation, the
Since usuallya%)< o5 | this could explain the forward symmetryx was broken including the effect of conical ends.
jump observed between the wave number of the dominan-[he d|sconnected_ curve of the SOIUt'.OnS (.)f the prot_)Iem in the
spiral mode and that of the dominambrmal mode at 7, small-gap approxmauo(agfaunTa,zK |nv.ar|ant.solut|on;|s
(from M=21 to M=27 in the caser=8000, see Fig. )L one of the curves of the |r_nperfect bifurcation that comes
A similar tendency was obtained in the small-gap approxi-from a pitchfork bifurcation in the=0 problem(equivalent

mation with conical end surfacé8]. In this paper and sub- to Rayleigh-Baard. This is the steady bifurcation of a roll

sequent papers, the tangent of the angle of inclination oi;ageggsa;’ breaking the reflection symmefyabsent in the

the lids was expressed by= yo[ 1+ ef(x)], where yo<<1.
Despite the different boundary conditions, notice also the  R. XY)—x,—y), (f,4,0)=(—f,—4,0),
resemblance between our solutions depicted in Fig. 1 and

solutions of that paper foe=1 and f(x)=x (Fig. 6 of

Ref. [8)). maintains the shift-reflect symmetry. This bifurcation pro-

duces states that drift either in one direction or the other with
the same drift rat¢24,25, and related between one to the
other by the reflectioR, for suitable chosen origins 1 The
The bifurcation of the conductive state, when perturba-drift speed, which vanishes at the bifurcation point, increases
tions of wave numbeM are considered, is a Hopf bifurca- away from it as the square root of the distance from the
tion in a system with symmetrO(2). Then according to bifurcation point. When the Coriolis term is included, the
Ref.[23], there is a unique branch of periodic solutions con-symmetry R is broken and an imperfect bifurcation is
sisting of rotating waves witfz,, spatial symmetry, which formed.
bifurcate from this state. Solutions belonging to this branch With respect to the stability of the=0.6 branches, the
(primary solutiong or to other branches related in some way branch labeled 1 is stable from the bifurcation of the conduc-
to them, are analyzed in this section. These solutions will béive state to R&32 540; the branch labeled 2 is stable from

A. Uniform rotating waves
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(a) 30 ' - , the solutions corresponding to branches labeled 1, 2, and 3
tends to decrease when the Rayleigh number increases, with
25 an opposite tendency for the solutions in branches 4 and 5.
- This figure also shows that for the highest values of the Ray-
L0l leigh number considered, the solutions in branches 1 and 3
S drift in the retrograde direction. In Fig(® we can appreci-
g 15k ate the small contribution of the zonal flow to the total
s stream field for solutions in branch 5, and how for the solu-
3 tions in the rest of the branches this contribution is about
§ Loy 50% for sufficiently high Rayleigh numbers in the range con-
sidered. Since the kinetic energy of the fluctuating compo-
051 nent of motion(Ey) exhibits a similar behavior to the Nus-
00 . . . selt number when the Rayleigh number variashough the
20000 40000 60000 80000 100000 rate of change is different depending on the type of solu-
Rayleigh number tions), the decrease in the Nusselt number for branch 3 is
accompanied by a notable increase of the value;dfsee
(6) 20 Figs. 2a) and 2c)]. The effect is similar, although not so
sharp, when the Nusselt number remains practically constant,
I5 ¢ as occurs in branches 1, 2, and 4.
In Figs. 3a) and 3b), we show at a fixed instant the
w 107 streamlines and the contour plots of the temperature @eld
2 in the rotating frame of reference of the cylinder, correspond-
.§° 5 ing to different solutions at Ra60 000. Starting from the top
'E‘ in a counterclockwise direction, they belong to the branches
Oy labeled 1, 2, 3, 4, and 5 in Fig. 2. To plot this figure, we have
maintained the number of different contour levels. Therefore,
ST the interval between contour levels for the different solutions
10 . . ‘ is not the same. Solutions corresponding to branches 1 and 2
20000 40000 60000 80000 100000 are those coming from the splitting of the mean flow solu-
Rayleigh number tions, and as discussed in REJ], they are characterized by
07 . ' . a small Nusselt number due to the shift of the convection
(© 3 eddies. For the solutions in branch 1, however, this shift is
0.6 towards the outer surface of the shell and the velocity field is
cyclonic relative to the rotating system. For the solutions in
o 051 branch 2, the shift is towards the inner surface and the ve-
§ 04 | locity field is anticyclonic. Figure &) shows the correspond-
2 ing cyclonic and anticyclonic shear for the solutions in
g 03t branches 1 and 2, respectively. The solutions in branches 3
= o2 | and 4 present a strong zonal flow in the middle of the shell,
) retrograde for solutions in branch 3 and prograde for solu-
o1 - tions in branch 4. The convection eddies are shifted to the
inner and outer parts of the shell, anticyclofayclonic) in
09 : 2 ; the inner part and cycloni@nticyclonig in the outer part for
20000 40000 60000 80000 100000

Rayleigh number the solutions in branch 8%). The solutions in branch 5 look
like rotating Taylor columns with a small zonal flow, pro-
FIG. 2. (a) Nusselt number N1, (b) drift rate w, and(c) ratio  grade in the middle of the shell. Since convection occupies
of energy associated to the mean flow versus the Rayleigh num- | the |ayer, the Nusselt number for this solution is the big-

ber Ra of uniform drifting waves. Solid lines correspond to solu- ; ; ;
est one. This last type of solution was also obtained by Ref.
tions of wave numbeM =17 at a radius ratiey=0.6. In(a) dashed ?11] yp y

li hift-reflecti iant soluti d the dotted li - . . -
ines (shift-reflectinvariant solutions and the dotted line corre In Figs. 4a), 4(b), and 4c) we represent with solid lines,

spond to solutions for the problem in the small-gap approximation

(«%=8.68). In both cases, the solutions that bifurcate from theth® Nusselt number Nul, the drifting ratew, and the ratio

conductive state come from the the dominant modes of the lineaf! €nergiesr¢, of uniform rotating waves of wave number
stability analysis of this state:=2800 ando=0.7. M =21 for »=0.6 andr=8000. The primary solution, which

bifurcates at Ra=102 156, comes from the dominant mode
the saddle point at Ra32 532 to Ra=33 785. Two different for these values oy and 7. Now it is a spiral mode. For
stable solutions with the same wave number then coexist fdhese values of the parameters, only solutions in branch 1 are
a small range of values of the Rayleigh number. In bothstable, but within a small region of the Rayleigh number
cases the bifurcation is superharmone=0). The rest of values. They lose stability at Ra.05 517 via a subharmonic
the branches are unstable. Figutb)Zhows how the drift of instability. At this point, the solutions still maintain their
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FIG. 3. Temperature fiel®, at a fixed instant in the rotating Rayleigh number
frame of reference of the cylinder, of the solutions corresponding to _ .
the branches 1, 2, 3, 4, and 5 in Fig. 2 for=80 000.(c) The zonal FIG. 4. (a) Nusselt number Nt 1, (b) drift rate w, and(c) ratio
mean flow of the same solutionsj=0.6, M=17, 7=2800, and  Of energy associated to mean flow, versus the Rayleigh number
o=0.7. Ra, for uniform drifting waves of wave numbbft =21 andz=0.6

(solid lines and of M =32 and »=0.7 (dotted-dashed lingsThe
. . . . . . solution that bifurcates from the conductive state #6+0.6 comes
spiral charaqter(smllar to the s_olutlon in Fig. )lw'_th a from the dominant modéspiral) for these parameters. The solution
small CyCl(_)n!C shear. As we will 5_?9 later, for this \_/aluethat bifurcates from the conductive state fpr0.7 comes from the
of the Coriolis parameter, the stability zone of the primaryyominant mode among thepiral ones for these parameters:
solutions for aspect ratios near thyg, the crossing of domi- ,—=8000 ands=0.7.

nant families of modes, is notably reduced. As in the previ-

ous case, solutions in branches that do not present an Unlike the previous case, this scenario of branches and
increase of the Nusselt number when the Rayleigh numbeahe connection between them transforms whenl. In the
increases, are the ones that show a faster growth rate ghme figure we have also depicted with dotted-dashed lines,
the contribution of the kinetic energy of the zonal flow branches of solutions of wave numbkr=32 for »=0.7,

to the total kinetic energy. where the solution that bifurcates from the conductive state
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no longer arises from the dominant mdder these values of
7 and 7, it is a normal one but comes from the dominant
mode among thepiral ones. In Figs. &), 4(b), and 4c), we
can observe how fop=0.6 the two disconnected curves are
formed by branches 2-3 and 4-5, whereas#e10.7 they are
formed by their counterparts 3-4 and 2-5. In addition, for this
last value of», a new disconnected curve appears in the
range of the values of the Rayleigh number considered in the
figure, and moves towards higher values of the Rayleigh
number forn=0.6.

Figures %a) and 3b) show in a fixed instant and in the
rotating frame of reference of the cylinder, the streamlines
and the contour plots of the temperature field of the different
solutions obtained for Rayleigh number R&70 000,
7=0.6, and 7=8000. Starting from the top, in a counter-
clockwise direction, they correspond to solutions in branches
1, 2, 3, 4, and 5 of Fig. 4. The solution corresponding to
branch 1 is characterized by a retrograde mean flow in the
inner part, greater than the prograde mean flow in the outer
part[see Fig. ¥)]; the shear is sufficient to shift the spiral
structure to the outer part of the shell. The solutions corre-
sponding to branch 2 exhibit a retrograde mean flow that is
maximum in the middle of the shell, and present anticyclonic
convective eddies in the inner part of the shell; the fluid in
the outer part of the annulus remains practically stagnant in
the rotating frame of reference of the cylinder. Solutions in
branch 3 present a retrograde zonal mean flow in the middle
part of the shell, and the convective eddies are shifted to the () 10
inner and outer parts of the shell, anticyclonic in the inner
part and cyclonic in the outer part. The spiral effect of solu-
tions corresponding to branches 4 and 5 is very small. They
present a shear that is not sufficient to destroy the double roll
columnar structure, and they look like two stacked rotating
normal columns. Notice how the solution corresponding to
branch 3 resembles the solution depicted in Fig. 3, which
belongs to the branch 3 of Fig. 2. In fact fer8000,7=0.9,
and M =122, the counterpart branch of branch 3 of Fig. 2 . 3 v ,
connects with the counterpart of branch 3 of Fig. 4, via a 30 L
saddle-node bifurcation. : ‘

In order to match the branches of solutions obtained in .2
Fig. 4 with those of the small-gap approximation, in Fi¢)6 -40 : : . .

- A 15 17 19 2.1 23 2.5
[Figs. 6b) and €c) are enlargements of two zones in Fig. Radius

6(a)] we plot with dashed and dotted lines the Nusselt num-

ber Nu-1, as a function of the Rayleigh number of the so- FIG. 5. From the top, in a counterclockwise directigia)
lutions corresponding or related to the dominaatond ra-  streamlines(b) contour plots of the temperature fiel at a fixed
dial harmonicof the problem with this approximation. The instant in the rotating frame of reference of the cylinder, of solu-
critical « of this harmonic forr=8000 isa{°®)=11.37, and  tions corresponding to the branches 1, 2, 3, 4, and 5 in Fig. 4 for

the critical Rayleigh number is I§§2)=106 330. Dashed Ra=170000. (c) The zonal mean flow of the same solutions;

lines now represent solutions that arénvariant (also with 7~ 0-6:M=21, 7=8000, andr=0.7.

midplane symmetric mean flow profjleand dotted lines rep-

resent branches of solutions without any symmetry, excepivhen the symmetryc is broken. The dashed curve a—b is
those associated to spatial and time periodicity. The dottedagain the disconnected curve of the imperfect bifurcation
line branches, e and d, appear as a consequence of two pitdirat arises from a pitchfork bifurcation in the=0 problem,
fork bifurcations that break the symmetryof branches a when the reflection symmetiyis broken due to the Coriolis
and b, respectively. These bifurcations are indicated by &rm. This pitchfork is the steady bifurcation of two stacked
small square in the Figs(® and &b). The dotted-line curve rolls that breaks the symmetiiy but maintains the< sym-
formed by branches f—g is a disconnected ¢ihdias been metry. In Figs. €a), 6(b), and &c), the Nusselt number of
checked up to values of the Rayleigh number near R&olutions for»=0.9 and wave numbevl =108 is also plot-
=300000. These dotted-line branches of solutions splitted (solid lineg. The solution that bifurcates from the con-
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ductive state is obtained from the dominant mode among the
spiral ones. The labels of the branches in these figures are
chosen to identify the branches of solutions obtainedfor
=0.6 (see Fig. 4. The correspondence between branches for
the small-gap approximation and fey=0.9 can easily be
done if the values of the Nusselt number, frequencies, ratio
of energies, and patterrisot shown hergare compared for

the higher values of the Rayleigh numbers of the figure. This
correspondence is the following: dashed branches a, b, and ¢
become branches 4, 7, and 3, respectively; and branches d, f,
g, and e split in branches 6-6’, 5-5’, 2-2’, and 1-1’, respec-
tively. However, the transition of the picture of branches for
the small-gap approximation to that obtained fp=0.9 is

not so clear in the intermediate range of values of the Ray-
leigh number analyzed.

In Fig. 7 we display for different values af the Nusselt
number Nu-1, the drift ratew, and the ratio of kinetic en-
ergiesr¢, as a function of the control parametér(Ra
—Ra.)/Rg, corresponding to the nonlinear solutions that re-
sult from the preferred mode bifurcating from the conductive
state. Solutions in annulus of radius ratigs 0.6 andn»=0.5
are considered. The dominant modes 612800 and 4000,
arenormal and for 7=8000 and 11 000 they amgpiral. In
the description of these results, we refer to solutions that
come fromnormal modes andpiral modes as normal solu-
tions and spiral solutions, respectively, although for not very
small values ofs, we already know that th@ormal and
spiral character is not mantained. For the chosen values of
the branches of normal and spiral solutions present a similar
behavior to branches 1 in Figs. 2 and 4, respectively. The
sudden change in the slope of the Nusselt apdor the
solution of =11 000, also appears in that @=8000 for
higher values ofé, although with less slope. Our results
show that, for solutions of the same family, the efficiency in
transporting heat decreases whenncreases. This effect,
according to Ref[13], could be due to the increase of the
drifting [see Fig. )], which hinders the fluid parcels from
travelling from the hot to the cold boundary. The slopes for
small values of5 also depend on the value ef This differs
from the results of Ref.8] for the small-gap approximation
and stress-free boundary conditions, where the Nusselt num-
ber is at lowest order independent of the Coriolis parameter
7. When the radius ratiay decreases, we observe a decrease
in the values of the Nusselt number for the same values of
and 4, provided that the solutions are of the same type. Once
again, this can be explained by the increase of the corre-
sponding drift. For small values @& we have also compared
the efficiency in transporting heat of solutions coming from
the dominanhormalmode and the dominaspiral mode for
the same values af and », and we have found that the one

@ssociated to thepiral mode is more efficient.

Since the degree of spiraling of tispiral modes is much

ant solutions and dotted lines correspond to solutions for the prob-higher than that of theormalones[12], their nonlinear in-
lem in the small-gap approximation{s%)=11.37). In both cases, teractions will produce larger Reynolds stresses, resulting in
the solutions that bifurcate from the conductive state have the wavé bigger mean flow4]. Thus, the growth rate af; for the

numbers that correspond to the preferred modes amongpihal
modes foryp=0.9 and among theecond radial harmonidor the

spiral solutions at small values af exceeds those of the
normal solutions. Moreover, the spiral solution at small val-

small-gap approximation(b) and (c) are enlargements of some ues of§ exhibits a growth of the ratio of kinetic energies

zones in(a); 7=8000 ando=0.7.

with increasingé stronger than the part of the normal solu-
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solutions at small values af. However, for the spiral solu-
tions, the slope of ; and the averaged kinetic energy asso-
ciated to the mean flow at small values&fdecreases when

n does. This suggests that other factors, in addition to the
degree of spiraling, must be taken into account if this behav-
ior is to be understood. As we commented above, the kinetic
energy of the fluctuating part shows a dependence on the
Rayleigh number similar to the Nusselt number. However,
the scaling depends on the solution. For example, although
the Nusselt number of the normal solution fer2800 is
bigger than the spiral one for=8000, the kinetic energy
(Ey) associated to the normal solution fer 2800 is smaller
than that of the spiral one faor=38000.

B. Instabilities of the primary solutions

In this section, we analyze the stability of the uniform
rotating waves presented previously. We mainly consider the
solutions corresponding to the branches that bifurcate from
the conductive state and which come from a dominant mode
in some region of the space of parameters. As we com-
mented above, in Fig. 1, we indicate by solid circles the
values of the Rayleigh number where the primary solutions,
for 7=8000 and for different values of,, destabilize. All
these solutions arise from the preferred modes for the chosen
values ofn. The figure shows how the stability region of the
solutions reduces considerably near the transition pajpt,
=0.605, corresponding to the crossing of the two different
families of dominant modes. Near this point, the primary
solutions destabilize with a finite value of the paramelgr
irrespective of whether they come fromsairal or from a
normal mode. For both smaller and higher valuespfar
from 7., we obtain a zone where the selected primary solu-
tions lose stability by means of a superharmonic instability
(d,=0). For values ofy very near 1, the value ad,, is
finite but relatively small, agreeing with our results for the
small-gap approximation for this value efand wave num-
ber corresponding to the critical valug,=12.8. In this ap-
proximation, we find that the mean flow solution destabilizes
with a value ofd~0.007, where the wave numbers excited
by using an expression similar to Edda) and (4b), are (0
+d)a. As discussed in Sec. Il, from the values of the pa-
rameterd,, (also indicated in the figujaesponsible for the
bifurcation, the wave numbers excited are known, and the
corresponding eigenfunction at the bifurcation point can be
examined in order to check which wave number of the per-
turbation has associated the maximum amplitiske Egs.
(43 and (4b)], and what the corresponding pattern is like.
For the solutions that arise from the dominant modes megar
(finite d,,,), we obtain that for those coming from tisiral
modes (on the left of %), the maximum coefficients

tions come from the dominant modes of the linear stability of the(bn;,Cqj) of the eigenfunction correspond to the indax

conductive statenormal for 7=2800 and 4000, andpiral for
7=8000 and 11 000y=0.7.

tions that comes from the “mean flow solution.” Whep
decreases fromy=0.6 to =0.5, the degree of spiraling of
the dominant modes for the same valueras observed to
increase. This explains our results in Figc)&or the normal

=1, so the perturbation is dominated by a periodic structure
of wave numbeM +m, with M being the wave number of
the primary solution. We have also ascertained that the asso-
ciated pattern is ohormaltype. For the solutions that come
from the columnar mode®n the right ofz.), the maximum
coefficients correspond to the index — 1, so the dominant
wave number in the perturbation i —m, and in this case
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50000 - ' - ' ' - . the solution that bifurcates from the uniform drifting wave of
wave numbeM =21, which comes from the dominasyiral

45000 | . mode forz=0.6 andr=8000(see Fig. 1 The value ofd,,

13 responsible for the bifurcation, is in this case 4/21, and as we
§ 40000 - | have commented above, the wave number of the perturbation
S 2 A7 having the maximum amplitude M =25. We observed that
2 ‘28 0 127 the secondary solution presented a set of 25 pairs of rolls in
> 35000 2/4 .0, v 0 0/ i the outer part of the layer and a set of 21 in the inner part,
;i : S Srencena / each set bei_ng propagated qt its own speed. Thus, the sec-
S 30000 ¢ 159 ] ondary solution has a dynamic similar to the double-column

convection obtained by Refl0] for the problem in the
25000 - | small-gap approximation with conical ends. Another case
considered was the secondary solution that bifurcates from
. . . . . . . the uniform rotating wave of wave numbgt=17 coming
00 01 02 03 04 05 06 07 08 from the dominanthormal mode for »=0.6 and r=2800
Radius ratio (see Fig. 8 The convection in the primary solutions, just
before the bifurcation, was confined in the outer part of the
_FIG. 8. Critical Rayleigh nu_mb_er as a function of the radius layer. The secondary solution, appearing from a superhar-
ratio fpr 7=2800 anda=0..7. Solid cwclgs denote.the values of the \qnic bifurcation @,,=0) oscillated between this structure
Rayle_lgh number for which the solution that bifurcates from theand one in which convection was restored in the whole of the

20000

the value ofdy, responsible for the instability. transport. The effect of the instability is then similar to the

vacillating instability described in Ref9,10].

the associated pattern is gpiral type. Thus, it can be sum- As well as considering the instabilities of the primary so-
marized that in this regiomear the crossing of different type lutions when the Rayleigh number is increased from its criti-
of dominant modes for a fixed value ofyp, a nonlinear so- cal value, we have also analyzed for a fixed value of the
lution coming from a dominant mode of one tympiral or  Coriolis parameterr, the stability zone of theéM-rotating
normal is destabilized by a perturbation of the other type ofwaves coming from the dominant modes for some valug of
mode(normalor spiral, respectively. We have also checked when, fixing the value oM, the value of the radius ratio
that for this value of the Coriolis parameters=8000, the varies beyond the range where the correspondngode is
wave number of the perturbation having the maximum amdominant (sideband stability In a radius ratio Rayleigh
plitude always corresponds to one of the other type of modesumber diagram, the side stability zone oMaprimary so-
that has already bifurcated from the conductive state for théution is always bounded by curves arising at the crossing
same value ofy [see Fig. %) in Ref.[12]]. points between the critical curve of tid mode, and the

In Fig. 8, we present the results for the caseref2800. curves of the two adjacent dominant modds and M, ,
The marginal curve of the conductive state is represented byhen 7 is decreased and increased, respectively. If, near a
a solid line, and in this case the crossing of the differentcrossing, we calculate from the valuesdyf responsible for
dominant modes takes placexat=0.228. The wave number the sideband instabilities the wave numbers excited, and
of the preferred modéspiral) before the transition isv from the corresponding eigenfunction we check which one
=4, and that of the preferred orfeormal) after the transi- has maximum amplitude, the wave number of the adjacent
tion is M=6. Again, near the transition point, the nonlinear mode at the crossing is always obtained. Moreover, when we
solutions coming from the preferred modes destabilize with &stimate from the imaginary part of the eigenvalue the fre-
finite value ofd,,. Examination of the eigenfunction corre- quency of this harmonic, we obtain that of the adjacent mode
sponding to the eigenvalue responsible for the bifurcatiorat the primary bifurcation. Thus, as expected, the interaction
shows that the solutions coming from one type of mode ar®f the neighbor modes, nonresonant in all the cases studied,
destabilized by a perturbation dominated by the other typeis responsible for the sideband instability. However, the
When 7 increases, we obtain a large zone where the bifurshape of these side stability boundaries depends on whether
cation is superharmonicdf,=0); and similar to that ob- the value ofy is near the crossing of the two types of dif-
tained forr=8000, whenz is near one, the solution destabi- ferent dominant modes, .
lizes again with a finite and small value @f,, agreeing with If the primary solution considered comes from a dominant
the results of Ref[10] for the destabilization of the mean mode for 5 far from 7., the side boundaries have a para-
flow solution for this value ofr and wave numberx, bolic shape, irrespectively of whether the dominant mode is
=8.68. normal or spiral. See, for example, in Fig. 9 the stability

In a previous papef26], we analyzed some secondary limits (solid circles of the primary solutions of wave number
solutions near the secondary bifurcation. The results wer®l =20 for a Coriolis parameter=2000. Wheny, varies, the
obtained by using a nonlinear time dependent code, similawave numbers of the dominant modes of the same family are
to the one in Ref[17], which integrates the Navier-Stokes sequential ;=M —1, M,=M+1). Then the value ofl,
equations in primitive variables by employing a second-ordeof the preferred sideband disturbance, near the value of the
stiffly stable splitting method. One of the cases studied waintersection of the adjacent modes, dg,=1/M on both
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30000

equivalent to branch 2 of Fig. 2. Thus, in the intersection of
the stability zones limited by solid circles and solid triangles,
two different stable drifting waves with the same wave num-
ber exist. For values 0<0.72, the patterns of the rotating
waves of wave numbevl = 20 that belong to the branch that
bifurcates from the conductive state and those of the lower
branch of the disconnected curve are similar to their coun-
terparts in Fig. 3 £=2800,=0.6), i.e., the solutions bifur-
cating from the conductive state turn into a solution with the
convection eddies shifted to the outer part of the layer when
the Rayleigh number increases; whereas for the other solu-
tions this shifting is to the inner part. However, for a value of
7 between 0.72 and 0.728, a nongeneric pitchfork bifurca-
tion occurs, and for values @j>0.728, the solutions bifur-
cating from the conductive state now turn into a solution
with the convection eddies shifted to the inner part of the
FIG. 9. Stability boundaries of rotating waves with wave num- layer when the Rayleigh number increases, and for the other
ber M =20. Solid circles for solutions in the branch that bifurcates solutions this shifting is to the outer part.
from the critical curve for this wave number, and solid triangles for  The shape of the side stability boundaries of an
the solution_s in_ the lower branch of the discc_nnnected curve Si_mi|aM-rotating wave, which comes from a preferred mode for a
to the one in Fig. 2. The values df, responsible for these limits value of 7 nears., is no longer parabolic. In Figs. (4 and

are given at the stability boundari€Smeans that the stability limit .
corresponds to the saddle-node point of the disconnected curve. Thl_eogg))oc\)’v © [:()jre_szrétol;or the val_uesl ofr:he C%r:pllsl_pa_lramfe{ﬁ '
valuesM of the critical curves are also indicate@d:=2000 and andr= , fespectively, the stability limits of the

o=0.7. primary solutions arising from both the dominaspiral
mode (solid circles and from thenormal mode (solid tri-

sides. So, far fromy,, for the values ofy corresponding to  angles, which dominate for the values of the radius ratip
the crossings of the preferred modes, there exist zonggst before and just aftep. . Thus, forr=8000, the stability
(V-shaped in the diagram—Ra) where at least two uniform zones correspond to drifting states of wave numbérs
drifting states with sequential wave numbers are stable=21 (spiral) and M =27 (normal), and for 7=2800, they
When the Rayleigh number is increased from the values atorrespond toM =4 (spiral) and M=6 (normal) rotating
the crossings, we obtain for the solutions coming from thewaves. The values af,, responsible for the stability bound-
normal modes(see Fig. 9, that on the left-side boundady,,  aries are included. In these figures we have also represented,
increases 1fy increases sequentiallyn such a way that the with dashed and solid lines, some of the critical curves of the
disturbance is dominated by the coefficients associated to thgpiral and normal modes, respectively, whose interactions
wave numbers of the dominant modes for the valuegyof control the sideband stability of the selected primary solu-
that are reached by this boundary, or for even smaller valuesions. The values of the wave numbers of these modes are
However, the right-side stability boundary corresponds to also included.
value ofd,,=1/M, and the disturbance is dominated by the For 7=8000, the left branch of the stability limit for the
wave numbeM + 1. In fact, for the solutions coming from solution coming from thepiral mode (M = 21) is parabolic,
the normal modes, if from the values d¥l and 5, we esti- whereas the right-side branch becomes practically indepen-
mate the value of the equivalent wave numbeof the so- dent of the Rayleigh number. For the solution that comes
lutions in the small-gap approximation, we retrieve the re-from the normal mode (M =27) we observe a shift of the
sults corresponding to the sideband instabilities of thestable region rightward, since the left-side branch has moved
symmetric thermal Rossby waves discussed in Refto the right. The interaction between tm®rmal M=27
[9,27,10,28,29 For a value of the Prandtl number=0.7, mode and thespiral M=21 and 22 modes seems to be re-
the referred works found that the left sideband instability in asponsible for this behavior, as can be deduced from the val-
diagram ¢, Rayleigh numbércorresponds to infinitesimal ues ofd,, at this branch. Notice that there does not exist any
values of the Floguet parameter and has the tendency to imange of parameters for which both thé=21 and theM
crease the value af slightly, shifting the solution towards =27 rotating waves are stable.
the stable zone, but very close to the left-side stability The shape of the stability zones for the solutions coming
boundary. On the other hand, the right sideband instabilityfrom the two type of modes near the transition point for the
associated to finite values of the Floquet parameter, tended fooriolis parameterr=2800 is completely different. In this
shift the unstable solution towards one with a valueaof case, the stability zone of the solution that comes from the
smaller thana, but near it. Notice that for a fixed value of spiral mode is shifted leftward. The interaction between the
M, increasingy has the effect of decreasing and that fora  spiral M=4 mode and théormal M=6 mode causes the
fixed value ofz, increasingM has the effect of increasing.  right-hand stability branch for thé1 =4 drifting wave to

In Fig. 9 we also indicated by solid triangles the limits of move to the left d,,=2/4). With respect to the stability of
the stability zone of the solutions that belong to a branchthe solution of wave numbévl =6, the left-side branch has

27000

24000

21000

Rayleigh number

18000

15000 ' L .
0.60 0.65 0.70 075 0.80

Radius ratio
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(a) 106000 dynamics in the curved annulus, whenever the dominant
mode in the annulus was @armal columnar type, and the
value of the radius ratio was far enough from the valueyof

for the Coriolis parameter considered. Nevertheless, the ef-
fects of the breaking of symmetry must be taken into ac-
count to describe the scenario of branches and the features of
the solutions associated with thermal columar modes.
When the dominant mode gpiral, we show that in this case
the connection should be carried out with the solutions re-
lated to the dominank invariant mode(second radial har-
monig in this approximation. However, we find that for
these solutions, the scenario of branches transforms signifi-
6/27 28 cantly when the curvature is included and the valuexof
101000 ™ 057 058 059 060 06/ 062 063 starts to decrease from the assymptotic value of one.

Radius ratio The global properties of the primary solutions corre-
sponding to the dominantormal and spiral modes for dif-
ferent values of the Coriolis parameter and radius ratio, are
described at the end of Sec. lll A. For the value of Prandtl
number considered in this paper, the effects of rotation usu-
ally lead to a decrease in the heat transport by convection at
the onset, which agrees with the results obtained by[R8&f.
in spherical shells for fluids of Prandtl number1. Since
these primary solutions correspond to different values of the
Coriolis parameter and have different wave numbers, it is
interesting to analyze the global properties, considering only
the influence of the type of mode they arise from. To do this,
we calculated the rotating waves, which came from two
modes, one of each family, with the same wave number for

. . . . > the same values of and », and we found that for small

300000.14 016 018 020 022 024 026 values of §, the solutions that stemmed from tlspiral
Radius ratio modes were more efficient in transporting convective heat,
had associated a smaller drift, and the contribution of the

FIG. 10. Stability boundaries of the rotating waves with the axysmmetric flow to the velocity field was bigger. Since the

wave numbers corresponding to the preferred modes for valugs of Coriolis parameter, radius ratio, and wave number for these
just before(spiral) and just aftenormal) #., for (a) 7=8000 and  solutions were the same, the better correlation between the

(b) 7=2800. The stability limits of the solution befofafte) ». are  radial velocity and the temperature field shown by speal

represented by solid circlegriangles. The values ofd,, respon-  modes, could account for the greater efficiency in transport-
sible for these limits are given on the stability boundaries. Thejng heat.

105000

104000

103000 |

Rayleigh number

102000

(b) 40000

38000

36000 |

34000 |

Rayleigh number

32000 |

critical curves of some azimuthal modébe value ofM is indi- Our paper is not restricted to a calculation of the primary
cated are depicted by dashedpiral) and by solid(norma) lines;  solytions coming from preferred modes. Other rotating
0=0.7. waves with the same wave number as the primary solutions

are obtained and their nonlinear properties described. Al-
a parabolic shape, and the valuesigfreveal that the inter- though most of them are unstable, the more information we
actions between thsl =6 normal mode and thé =4 and have about these solutions to the problem, the easier it is to
M=3 spiral modes govern this stability boundary. The explain the more complex behavior that the solutions of the

right-hand side boundary has an almost vertical concav8ystem may exhibit after the secondary bifurcations. On one
form. The intersection of the stability regions of te=4  hand, we find solutions characterized by a weak mean flow,

andM =6 drifting waves is now a thin stripe region leaning & remarkable heat transfer, and with a simple or double non-
to the left of 7, . distortioned structure of columns, and on the other hand,
solutions with a component of the mean flow containing
more than 50% of the total kinetic energy, even for values of
the Rayleigh number lesser than two times the critical value
In this paper we analyze nonlinear solutions related to th¢see Fig. 4c)]. Notice how the effect of the rigid lids is not
two types of dominant modesprmal and spiral, identified  enough to supress the strong zonal flows of some of the
in our previous paperl2]. Particular effort is made to con- rotating waves. However, we suppose that, for very small
nect the solutions in the annulus with those obtained in theupercritical values of the Rayleigh number, the nonslip
small-gap approximation, in order to find out to what extentboundary conditions of our model prevent us from obtaining
this approximation can be used. Our nonlinear results showolutions with mean flows as strong as those in the work of
that the small-gap approximation might serve to predict theRef.[4] in a spherical shell with stress-free boundary condi-

IV. CONCLUSIONS

056312-13



D. PINO, M. NET, J. éANCHEZ, I. MERCADER PHYSICAL REVIEW E63 056312

tions and the same Prandtl number as the one used here. leigh number. Some of the behavior observed in this paper
We analyze in detail the stability zones of the primarycan also be identified in rotating spherical shells, for ex-
solutions and we also indicate the characteristics of the mosimple, the generation of strong zonal flows, the tendency to
unstable perturbations. The results of the linear stabilitysplit into multicolumns, or the heat transfer dependence with
analysis of the conductive state are again essential. Obtainingle Rayleigh number when the Taylor number varies. Thus,
7. is not only critical for elucidating which type of family of e trust that our results may provide some clues about the

modes is the dominant one and what the features of the nofnlinear solutions and higher bifurcations associated with
linear solutions are, but also the proximity of the value of thethe columnar convection in spherical shells.

radius ratio to this point has a profound effect on the shape

of the stability regions, as well as on the type of the second-

ary blf.urcatlon of the primary spluuons. Our resylts show ACKNOWLEDGMENTS
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